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1  | INTRODUC TION

Sex allocation in simultaneous hermaphrodites is defined as the 
proportion of resources allocated to the male relative to the female 
functions. It is an important life-history trait affecting the fitness of 
an individual and hence is subject to selection pressure under given 
environmental conditions (Charnov, 1982). Since the first formaliza-
tion by Charnov, theoretical predictions and empirical tests of the 
optimal sex allocation under these conditions have been a touch-
stone in modern evolutionary biology (Janicke et al., 2013; Leonard, 
2019; Schärer, 2009; West, 2009).

Irrespective of its considerable success, sex allocation theory needs 
refinement (Schärer, 2009). First, mating group size (MGS) has been 

considered an important factor that affects the optimal sex allocation. 
Charnov (1980, 1982) predicted theoretically that female-biased in-
vestments are favored in small mating groups in order to alleviate local 
sperm competition (i.e., competition between related sperm; Schärer, 
2009). Since then, empirical studies on various simultaneous hermaph-
rodites (e.g., Annelida, Crustacea, Platyhelminthes) have generally sup-
ported the prediction (Janicke et al., 2013; Schärer, 2009). However, 
Yamaguchi, Yusa, Sawada, and Takahashi (2013) pointed out that the 
MGS concept has two aspects, namely (a) the number of individuals 
to which a focal individual can donate sperm (+1 = MGS in the male 
function; MGSm) and (b) the number of individuals from which the indi-
vidual can receive sperm (+1 = MGS in the female function; MGSf). The 
original MGS concept assumes that MGS does not differ between male 
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Abstract
Sex allocation theory predicts that the optimal sexual resource allocation of simulta-
neous hermaphrodites is affected by mating group size (MGS). Although the original 
concept assumes that the MGS does not differ between male and female functions, 
the MGS in the male function (MGSm; i.e., the number of sperm recipients the focal 
individual can deliver its sperm to plus one) and that in the female function (MGSf; 
the number of sperm donors plus one) do not always coincide and may differently 
affect the optimal sex allocation. Moreover, reproductive costs can be split into “vari-
able” (e.g., sperm and eggs) and “fixed” (e.g., genitalia) costs, but these have been 
seldom distinguished in empirical studies. We examined the effects of MGSm and 
MGSf on the fixed and variable reproductive investments in the sessilian barnacle 
Balanus rostratus. The results showed that MGSm had a positive effect on sex alloca-
tion, whereas MGSf had a nearly significant negative effect. Moreover, the “fixed” 
cost varied with body size and both aspects of MGS. We argue that the two aspects 
of MGS should be distinguished for organisms with unilateral mating.
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and female functions as all individuals in the same group mate with all 
available individuals. Although this distinction may not be important 
in reciprocally mating hermaphrodites (but see Pongratz & Michiels, 
2003 for an exception), these two aspects of MGS do not necessarily 
coincide in hermaphrodites with unilateral mating (Figure 1). This dis-
tinction is especially important in simultaneous hermaphrodites where 
individuals first mature as male and then become hermaphroditic 
(protandric simultaneous hermaphrodites; Baeza, 2007).

The second issue that needs refinement in the concept of sex al-
location is the distinction between “fixed” and “variable” costs (Heath, 
1977; Schärer, 2009). The fixed costs include producing and maintain-
ing reproductive organs such as genitalia that are not consumed in each 
reproductive event, and the variable costs correspond to the resources 
allocated to produce the gametes (Heath, 1977; Schärer, 2009). These 
two costs will likely have different responses to environmental factors 
such as the two aspects of MGS; for instance, the variable cost is af-
fected by the MGSs but not the fixed cost. Moreover, the “fixed” cost, 
such as the penis, varies according to the physical environments such 
as wave exposures in animals such as barnacles (Neufeld & Palmer, 
2008). However, these are seldom distinguished in empirical studies 
(Lorenzi, Sella, Schleicherova, & Ramella, 2005; Schärer, 2009).

Sessilian (balanomorphan) barnacles (Cirripedia: Thoracica) 
are sedentary animals that deliver sperm to neighboring individ-
uals using a long penis (Anderson, 1993; Barnes & Barnes, 1977; 
Murata, Imafuku, & Abe, 2001). The size of the penis is an espe-
cially important characteristic since it determines the area hence 
the number of individuals that an individual's sperm are delivered, 
hence MGSm (Neufeld & Palmer, 2008). Moreover, barnacles are 
the original model organisms considered in Charnov (1980, 1982) 
and have been used for testing sex allocation theory. They show 
various degrees of sex allocation, to the extent that even pure 
males (i.e., sex allocation = 1) and females (0) are known in several 

species (Darwin, 1854; Yusa, 2019; Yusa, Takemura, Sawada, & 
Yamaguchi, 2013). In barnacles, MGS (not distinguished into MGSm 
and MGSf) has different effects on sex allocation depending on 
the species. In the balanomorphan barnacle Catomerus polymerus, 
sex allocation is less female-biased in large mating groups than in 
small groups (Raimondi & Martin, 1991) as predicted by Charnov's 
model. But MGS does not affect sex allocation in other species 
(Hoch & Levinton, 2012; Kelly & Sanford, 2010). Although the dif-
ferent results may reflect species difference, the degree of pro-
miscuity and the different criteria used to distinguish small and 
large groups may also be relevant.

The cost of having a penis may be high in barnacles because it is 
several times longer than the body length in many species (Darwin, 
1854; Dreyer et al., 2018; Neufeld & Palmer, 2008), and it is discarded 
after each breeding season at least in such species as Semibalanus 
balanoides (previously Balanus balanoides; Crisp & Patel, 1958, 1960; 
Klepal & Barnes, 1974, but not in other species; Barnes, 1992; Hoch, 
Schneck, & Neufeld, 2016). The penis shows phenotypic plasticity in 
morphology in relation to local environmental factors, such as wave 
strength and density (Hoch, 2008, 2009, 2010; Neufeld & Palmer, 
2008). Thus, evaluating the fixed cost as male is important in barna-
cles. However, few studies have examined such fixed and variable 
costs in sex allocation (Hoch & Levinton, 2012). In this study, we 
examined the effects of MGSm and MGSf on the fixed and variable 
costs of sex allocation in a simultaneous hermaphrodite, the sessilian 
barnacle Balanus rostratus.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and rearing

Balanus rostratus has an annual reproductive cycle (Kado, Suzuki, 
Suzuki, Nanba, & Ogawa, 2009; Korn, 1985). The ovary develops 
most extensively from December to April (Kado et al., 2009). The 
development of the testis starts from February and reaches maxi-
mum before the onset of the mating season (Kado et al., 2009; Korn, 
1985), which is from October to November in Northern Japan (Kado 
et al., 2009). Individuals keep long penises even in nonreproductive 
seasons (1.89–3.60 cm, mean = 2.53 cm, N = 36 measured in June 
2018; personal observation).

Individuals of B. rostratus were obtained from a wave-protected 
area managed by the Kawauchi Fisheries Cooperative Association 
(Mutsu Town, Aomori Prefecture, Japan; 41°11′50″N; 140°59′21″E) 
in May 2018 (N = 173 barnacles). These barnacles had settled natu-
rally on the shells of the scallop Patinopecten yessoensis that were sus-
pended in the sea at a depth of about 20 m in situ using hanging culture 
for almost 4 years. Thereafter, these shells were suspended in the sea 
at a depth of approximately 8 m using buoys and ropes in Hakodate 
City, Hokkaido Prefecture, Japan (41°56′17″N; 140°56′34″E). Shells 
were spaced at 20 cm intervals to avoid barnacles on different shells 
from interacting. Forty-two shells, each with 2–7 barnacles (Figure A1), 
were reared until late September 2018 (N = 173 barnacles).

F I G U R E  1   Hypothetical barnacle population consisting of 
large individuals (i.e., hermaphrodite phase) and small ones (i.e., 
protandric male phase). The area to which the penis of focal 
individual (gray color) can reach is shown as a meshed circle. The 
focal individual has different MGSs, MGSm = 4 and MGSf = 5, 
including itself
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2.2 | Measurements

The barnacles were frozen at the end of the rearing period, which 
was just before the onset of the mating season (Kado et al., 2009); 
therefore, the reproductive organs had completely developed but 
individuals had not used their gametes yet. Although they may con-
tinue to produce eggs and sperm during the mating season, it is the 
most suitable season to quantify sex allocation in this species.

To calculate MGS, we measured the distance between individ-
uals (minimum distance between the two opercula) on the same 
bivalve shell. Then we dissected out the operculum (scutum and 
tergum), ovary, testis, seminal vesicles, and penis of each specimen 
using a nipper and tweezers. The penis was photographed with a 
digital camera (Stylus TG-4, Olympus Corporation), and its length 
and width were measured to the nearest 10 µm using ImageJ (ver-
sion 1.51j8, National Institutes of Health). Then, the operculum and 
ovary were each placed on an aluminum pan (35 mm in diameter, 
21 mm high) that had been preheated at 480°C and preweighed with 
an electric microbalance (Mettler Toledo MT5) to a precision of 1 µg. 
The testis, seminal vesicles, and penis were each placed on a smaller 
aluminum pan (16 mm in diameter, 15 mm high). Then, the treated 
organs were dried in an oven at 60°C for 12 hr and were weighed to 
determine dry mass.

2.3 | Analyses

We measured MGSm and MGSf for each individual as the number 
of individuals within the area reachable by its penis plus one and 
the number of individuals whose penises can reach the focal indi-
vidual plus one, respectively. The distance reachable by the penis 
was considered to be 1.82 times the length of the penis of the speci-
men based on the elongation rate of the congener B. glandula in a 
wave-protected shore (Neufeld & Palmer, 2008). This species has 
a close phylogenetic relationship to B. rostratus as they belong the 
same Balanus balanus group (Pitombo, 2004).

Individuals with no potential mating partner (i.e., MGS = 1) or 
those with some organs lost were excluded from the analyses. 
Following Hoch and Levinton (2012), the ovary was considered as 
a female variable cost. The testis and seminal vesicles were consid-
ered as a male variable cost, and the penis as a male fixed cost (Hoch 
& Levinton, 2012). The operculum weight was used as the index of 
body weight (Kado et al., 2009) because they were positively cor-
related (r = .75, p < .001, N = 162; Pearson's product-moment cor-
relation). Sex allocation was defined as the total male investment 
(testis and seminal vesicles) divided by the male and female invest-
ments (testis, seminal vesicles, and ovary). Note that the sex alloca-
tion in terms of weight as we evaluated is a relative value because we 
do not know the actual energetic cost invested in each sex function.

To investigate the effects of MGSm, MGSf, and that of body size, 
we used linear mixed-effects models (LMMs, R package lmerTest; 
Kuznetsova, Brockhoff, & Christensen, 2017) in which each repro-
ductive investment (testis + seminal vesicles, penis, and ovary) and 

sex allocation was treated as a response variable (N = 164). The 
MGSm and MGSf can be different as penis length varied among 
individuals, from 1.67 to 4.46 cm (mean ± SD = 2.77 ± 0.53). The 
effects of MGSs on all response variables were not artefacts due to 
multiple collinearity (generally considered to be present if Variance 
Inflation Factor [VIF] > 10: Chatterjee & Hadi, 2012) between 
MGSm and MGSf (VIF < 2.45 in all the analyses; R package car; Fox 
& Weisberg, 2019). The correlation coefficient r was 0.75, which was 
significant (p < .001; Pearson's product-moment correlation) but 
was not very high as compared with the traditional assumption of 
r = 1). Additionally, the signs of estimates for MGSm and MGSf did 
not change between simple and multiple regressions for all response 
variables. All these pieces of evidence are in disfavor of the presence 
of multiple collinearity.

We included the shell ID (N = 41) as a random factor to incorpo-
rate differences in the microenvironment (e.g., number of individuals 
on one shell). Statistically significance was set at p = .05. Interaction 
terms were not incorporated in the models as all interactions were 
nonsignificant. All analyses were performed using R software ver-
sion 3.6.1 (R Core Team, 2019).

3  | RESULTS

The dry weight of the operculum ranged from 244.98 to 1,807.32 mg, 
and the testis and seminal vesicles ranged from 4.63 to 227.84 mg. 
The penis weight was much smaller, but varied greatly, from 0.33 to 
2.63 mg and the length ranged from 1.67 to 4.46 cm. The ovary also 
varied greatly from 62.91 to 1,949.72 mg; however, all the individuals 
in this study had developed the ovary to some extent. Both MGSm 
and MGSf ranged from 2 to 7 individuals.

The results of LMMs showed that both the weight of the tes-
tis and seminal vesicles (i.e., variable cost as male) and that of the 
penis (i.e., fixed cost as male) increased with body size and MGSm. 
Additionally, these male investments decreased with MGSf (Table 1). 
On the other hand, the ovary was only positively affected by body 
size and unaffected by either MGS (Table 1). Sex allocation increased 
with increasing MGSm and decreased almost significantly with in-
creasing MGSf (Table 1; Figure 2). The inclusion of MGSf improved 
the model on sex allocation significantly as compared with the 
model without MGSf (Likelihood chi-square = 3.869, p = .049). This 
is also true for model on the weight of the testis and seminal vesi-
cles (Likelihood chi-square = 7.546, p = .006) and that of the penis 
(Likelihood chi-square = 10.514, p = .001).

4  | DISCUSSION

This study shows that sex allocation responded differently to MGSm 
and MGSf in the barnacle B. rostratus. Although this needs to be 
interpreted with considerable care as sex allocation can be driven 
by only the male function, sex allocation was positively affected 
by MGSm, which supports the prediction of sex allocation theory 



     |  2495TAMECHIKA ET Al.

(Charnov, 1980, 1982, 1987). MGSm is related to the number of eggs 
the focal individuals can fertilize and hence directly affects sex allo-
cation via change in the shape of male fitness curve. Most likely, the 
increased sex allocation, and male investment as well, was an adap-
tive response to the increased number of available eggs (Charnov, 
1980, 1982, 1987) with increasing MGSm. Similar increases of 
male allocation have been reported in many animals (e.g., Annelida; 
Schärer & Ladurner, 2003, Janicke et al., 2013, Chrodata; Hart et 
al., 2010, Platyhelminthes; Trouvé, Jourdane, Renaud, Durand, & 
Morand, 1999, Tan, Govedich, & Burd, 2004) including a barnacle 
(Raimondi & Martin, 1991).

On the other hand, when the effects of MGSm and MGSf were 
evaluated separately, sex allocation was affected negatively by 
MGSf almost significantly. Moreover, the models with both MGSm 
and MGSf were better than those with MGSm (and body size) alone. 
Combined with the fact that female investment was not affected 
by both MGS, the decreased sex allocation was unexpectedly owing 
to the decrease in the investment to male function with increas-
ing MGSf (Table 1). Unlike MGSm which is linked to the number of 
available eggs, MGSf is related to the amount of sperm received. 
Therefore, MGSf may be a better predictor of the intensity of sperm 
competition than MGSm. Severer sperm competition, with the 
number of available eggs being constant, lowers male fitness curve 
and hence reducing male allocation in such cases appears to be an 
adaptive response. Although not known in barnacles, MGSf may also 
be an important factor affecting sex allocation if individuals digest 
received sperm for nutrition (Yamaguchi, Sawada, Nakashima, & 
Takahashi, 2012).

The mechanisms by which individuals sense their own MGSm 
and MGSf are unknown, but the barnacles may use water-borne 
chemicals to collect information on the number of neighboring indi-
viduals and degrees of their ovary and testis developments. In fact, 
some chemicals are used to attract neighbors (Klepal, 1990) such as 
ascorbic acid in Balanus sp. (Collier, Ray, & Wilson, 1956). Barnacles 
even use their penises to search for functional females (Anderson, 
1993; Klepal, 1990; Murata et al., 2001). Although the penis is dis-
carded after the mating season in some congeners (Crisp & Patel, 
1958, 1960; Klepal & Barnes, 1974), B. rostratus keep long penises 
even in nonmating seasons (personal observation). Thus, they are 
likely to collect information on mating partners and adjust sex allo-
cation even before the onset of mating season.

The different responses of male and female outputs suggest a 
lack of trade-off between male and female functions. This lack may 

Reproductive organ Parameters Estimate SE p

Testis and seminal 
vesicle

Intercept 17.980 13.251 .178

MGSm 10.799 3.629 .003

MGSf –10.501 3.784 .006

Body weight (mg) 0.059 0.010 <.001

Penis Intercept 0.275 0.104 .009

MGSm 0.105 0.028 <.001

MGSf –0.097 0.029 .001

Body weight (mg) 0.0007 0.00008 <.001

Ovary Intercept 0.761 104.840 .994

MGSm 40.752 30.598 .185

MGSf –39.898 31.512 .207

Body weight (mg) 0.843 0.081 <.001

Sex allocation (male/
total reproductive 
investment)

Intercept 0.1084 0.0152 <.001

MGSm 0.0089 0.0040 .0267

MGSf –0.0083 0.0042 .0501

Body weight (mg) –0.000020 0.000012 .0930

TA B L E  1   LMM results on effects 
of MGSm, MGSf, and body size on 
reproductive investment (testis + seminal 
vesicles, penis, and ovary) and sex 
allocation in Balanus rostratus

F I G U R E  2   Effects of MGSm (filled circles) and MGSf (open 
circles) on sex allocation (male/total reproductive investment; 
MGSm; p = .0267, regression: y = 0.0089x + 0.0632, MGSf; 
p = .0501, regression: y = –0.0083x + 0.1148; LMM). Regression 
lines were drawn based on the mean value of body size 
(=1,014.18 mg operculum weight) and the values of most frequent 
MGS (=3, both as male and as female). Bars and large circles show 
standard deviation and mean value, respectively
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have been caused by the absence of synchrony in the development 
of female and male gonads (Korn, 1985). The period of yolk forma-
tion of B. rostratus overlaps with the period when primary produc-
tion in this area is high (i.e., winter–spring; Osaka, 1985). In contrast, 
the testis is fully developed in autumn, just before the onset of the 
mating season (Kado et al., 2009). Therefore, larger amounts of 
resources can be used for female investment than for male invest-
ment. Hines (1978) also indicated that egg and sperm production in 
some balanomorphan barnacles shows different responses to food 
availability. Furthermore, two other factors may be related to the 
lack of a trade-off between the sexes: (a) investments in functions 
other than gamete production and (b) the effect of resource bud-
get. Hermaphrodites often invest their resources to factors other 
than gamete production, such as parental care and mating behavior 
(Baeza, 2007; Lorenzi, Schleicherová, & Sella, 2006). For example, 
there exists a trade-off between male behavior and egg production 
in the polychaete worm Ophryotrocha diadema (Picchi & Lorenzi, 
2019; Santi, Picchi, & Lorenzi, 2018). In addition, a large varia-
tion in reproductive resource budget among individuals may mask 
the underlying trade-off (Schärer, Sandner, & Michiels, 2005; Van 
Noordwijk & de Jong, 1986). However, we made an effort to control 
such effects statistically by incorporating body size and attachment 
site (scallop shells) in the model.

Previous empirical studies on barnacles evaluated sex alloca-
tion without considering fixed cost, or both variable and fixed costs 
were incorporated together as resource allocation to male function 
(Hoch & Levinton, 2012; Kelly & Sanford, 2010; Raimondi & Martin, 
1991). This is acceptable as long as the fixed cost (a) does not vary 
much among individuals and (b) is negligible (Schärer, 2009). Hoch 
and Levinton (2012) also used the total male investment in S. bal-
anoides and B. glandula after ensuring that the inclusion of penis 
weight did not change the outcome of the results, and there were 
no differences in the mean weight of the penis among treatments 
or sites. In our study, penis weight accounted for on average 1.24% 
(=1.00/80.75 × 100) of the total male output. Nevertheless, fixed 
cost varied greatly with body size and both aspects of group size. As 
for the fixed cost, when penis size is not negligible and there is vari-
ation in penial morphology, this investment cannot be considered as 
“fixed” as it varies with the environment (Schärer, 2009). The cost 
of building and keeping the penis can be large for barnacles living in 
wave-exposed shores or in dense populations (Hoch, 2008; López, 
Catalán, Barriga, & López, 2014; Neufeld & Palmer, 2008). Moreover, 
as some barnacles mature at very small sizes (dwarf males; Yusa, 
2019; Yusa et al., 2013) and the penis is renewed in each reproduc-
tive season (Crisp & Patel, 1958, 1960; Klepal & Barnes, 1974), in-
vesting in a penis is comparatively larger cost for them (Crisp, 1983; 
Dreyer et al., 2018). Such fixed cost may affect the optimal sex al-
location, and ultimately, the evolution of sexual systems (Charnov, 
1982). Therefore, it is important to correctly evaluate and incorpo-
rate fixed cost in male allocation (Michiels, Crowley, & Anthes, 2009; 
Schärer & Pen, 2013).

In summary, this study has shown that the effects of MGSm and 
MGSf on sex allocation are different, and that fixed cost is in fact 

highly variable. We suggest that MGSm is relevant to the number 
of female-acting hermaphrodites and their eggs available to the 
focal individual as male, whereas MGSf is linked to the number of 
male-acting neighbors and the total amount of their sperm it re-
ceives. Hence, MGSf is likely to reflect the intensity of sperm com-
petition the focal individual experiences better than MGSm. Such 
distinction may also be important in other hermaphrodites with uni-
lateral mating. Accurate evaluation of the two aspects of MGS, and 
fixed and variable costs, will be important in future sex allocation 
study.
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