Bull. Plankton Soc. Japan 55(1): 00-00, 2008

光学式プランクトンカウンター (OPC: Optical Plankton Counter) を用いた初夏の西部北太平洋における動物プランクトン群集構造の 緯度・経年変動解析

横井 裕·山口 篤*·池田 勉

北海道大学大学院水産科学研究院海洋生物学分野, 〒041-8611 北海道函館市港町 3-1-1

Regional and inter-annual changes in the abundance, biomass and community structure of mesozooplankton in the western North Pacific in early summer; as analyzed with an optical plankton counter

YUU YOKOI, ATSUSHI YAMAGUCHI* AND TSUTOMU IKEDA

Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3–1–1 Minatomachi, Hakodate, Hokkaido 041–8611, Japan

* Corresponding author: E-mail: a-yama@fish.hokudai.ac.jp

Abstract Abundance, biomass and size structure of mesozooplankton samples collected with Norpac nets from 0–150 m at 5–13 latitudinal stations $(35^{\circ}N \text{ to } 44^{\circ}N)$ on $155^{\circ}E$ in the western North Pacific during May-June every year (1993-2004) was analyzed by using an optical plankton counter. Zooplankton counts on 4096 size units (size range: 0.25 to 20 mm equivalent spherical diameter [ESD]) were converted to biomass, and summed as the community biomass. The data of each size class was combined with in situ water temperature data to estimate production potential by Ikeda and Motoda's method. Depending on the latitude, study region was classified into subarctic front (SF: $>42^{\circ}$ N), transition domain (TR: $40-42^{\circ}$ N), subarctic boundary $(SB: 38-40^{\circ}N)$ and subtropic current system $(ST: < 38^{\circ}N)$. Throughout the entire study period, the regional variations were seen in most size fractions of the abundance, biomass and production, ranging from 52,754 to 86,926 inds. m^{-2} , from 2,656 to 10,183 mg dry mass m^{-2} and from 134 to $219 \text{ mg Cm}^{-2} \text{day}^{-1}$, respectively. Among the four regions, TR was characterized by high biomass and production but by least abundance. Inter-annual variations in the abundance, biomass and production were largely due to those of 2-3 mm ESD fraction (and 1-2 mm ESD fraction for the biomass). Thus, the 2-3 mm ESD fractions (composed of Neocalanus spp.) were the most important one affecting not only the regional but inter-annual variation patterns of mesozooplankton. Apart from consistent importance of Neocalanus spp., gelatinous zooplankton such as appendicularians, doliolids and salps were observed to form irregular peaks at ST and SB regions in some years. It is suggested that the outbreak of gelatinous zooplankton is related to the development of thermocline or halocline in the top 40 m of the water column, which may prevent nutrient supply to surface layer, and improve food supply via microbial loop.

Key words: gelatinous zooplankton, Neocalanus, OPC, size, transition domain

2007年0月00日受付, 2007年0月00日受理

1. 序 論

水産学において,有用魚介類資源の変動メカニズムを 解明することは究極目的の一つであるが,そのためには 魚介類の餌資源である動物プランクトンの現存量に関す る情報を広域的,連続的かつ長期的に把握することが不 可欠である.なかでも,サイズ別あるいは種・群別の動 物プランクトン現存量を把握することは,餌のサイズが 魚類の餌選択性に影響を及ぼす要因となること (Sheldon et al. 1977),餌料生物の種組成の違いが仔魚の成長 と生残に影響を与えること (van der Meeren & Næss 1993) などから,とくに重要であると考えられる.

北太平洋における長期的なプランクトン観測として, 東部域の St. P (Mackas et al. 1998) や, カリフォルニア 海流域の CalCOFI プロジェクト (Ohman & Venrick 2003), 日本近海の東北沖における長期変動調査(小達 1994) などがあり、これまで多くの試料や情報が蓄積さ れてきた.しかし、動物プランクトンの長期変動に関す る研究の大半は、動物プランクトン群集全体の湿重量ま たは沈殿量といった現存量に関するものがほとんどであ る (例えば Sugimoto & Tadokoro 1997, 1998). 近年で は、動物プランクトン群集構造に焦点をあてた長期変動 に関する研究も行われているが (Tadokoro et al. 2005, Chiba et al. 2004, 2006), それらも主要種についてのみ 解析を行うにとどまっており, 全分類群を解析している わけではない.水産学上,魚類の餌資源という観点では, 動物プランクトンのサイズ別あるいは種・分類群別の現 存量を把握することが重要であるものの、北太平洋にお いてこれらの知見の蓄積はいまだ不十分である。

一方,海洋学という観点においても動物プランクトン のサイズ分布を明らかにすることには重要な意味があ る. Michaels & Silver (1988) は,表層の動物プランク トン群集にどのような分類群が優占するかが該当海域に おける鉛直的な物質輸送量を決定すると指摘している. また同様に,Boyd & Newton (1999) は,表層から深層 への粒状有機炭素 (POC) 輸送量は,表層生態系における プランクトン群集のバイオマスと分類群組成によって決 まることを指摘している.例えば表層でサルパ類が優占 する場合,サルパ類は微小な植物プランクトンを摂餌 し,糞粒として大粒子化することで粒子の沈降速度を速 め,表層から深層への急速な物質輸送を可能にしている (Ducklow et al. 2001).つまり,海洋における物質循環 という観点からも,動物プランクトンのサイズ分布ある いは分類群構造を明らかにすることの重要性は高い. このように動物プランクトンのサイズ分布ごとの現存 量を明らかにすることは水産学,海洋学の双方の観点か ら重要であるにもかかわらず,実際には十分な解析が行 われずに今日に至っている.その理由としてその解析の 困難さが挙げられる.従来の顕微鏡による解析には多大 な労力と時間,そして動物プランクトンの形態分類につ いての専門的な知識が必要となる.そのためネット採集 で得られた動物プランクトン試料の大部分は,沈殿量ま たは湿重量の測定が行われるのみで,サイズあるいは分 類群組成の解析がなされるのはごく一部の試料に限られ ているのが現状である.こうした問題の解決策として, 従来の顕微鏡による解析に比べて正確,簡便かつ短時間 にサイズ分布の解析が可能な光学式プランクトンカウン ター (OPC: Optical Plankton Counter, Herman 1988) の導入が注目されている.

OPC の測定原理は試料を感光部に通過させ,その際 に生じる光の減衰を電気信号として捉え,全部で4096 段階のデジタルサイズユニット (DSU) に分別しサイズ 階級毎に粒子数を記録するものである (Herman 1988). 各 DSU の粒子は Herman (1992) により確立された非 線形回帰式を用いて等価粒径 (ESD: Equivalent Spherical Diameter) に換算される. OPC は ESD が 0.25 mm から 20 mm のサイズの粒子を計測することができ (Herman 1988),曳航体に組み込んで現場海域における 動物プランクトン分布の調査に利用可能である.野外で の使用例として,北西部大西洋 (Herman et al. 1993), イベリア海 (Nogueira et al. 2004),インド洋 (Labat et al. 2002, Gallienne et al. 2004) における研究がある.

ただし, OPC はその構造上, 粒子の重なりによる粒子 数の過小評価や, 魚卵やゼラチナス動物プランクトンな ど透明な粒子に対する過小評価, デトライタスによる体 積の過大評価といった問題を抱えている (Herman 1992, Sprules et al. 1998, Zhang et al. 2000). とくに前 述の曳航体に組み込んだ野外調査のような場合, これら の問題を回避することは難しいが, 実験室内でホルマリ ン固定試料を解析する場合は適切に前処理を行い, 適正 な濃度で試料が OPC を通過するように調整することに より正確な測定が可能となる.

これらの問題点を踏まえて, Beaulieu et al. (1999) は実験室型 OPC 計測装置を提案した. この装置は, ア クリルチャンバーへの流量を調節することで OPC を通 過する粒子数(動物プランクトン個体数)をコントロー ルできるため,前述の粒子の重なりによる影響を避ける ことができる. さらに,装置の流路内にデトライタス除 去用のフィルターを設置することでノイズを低減でき

ML9055C_Mark10

る. この装置を利用して, CalCOFI で採集・保存されて いた固定試料を解析し, バイオマスと Chl-a の関係およ びバイオマスの空間変動の解明 (Beaulieu et al. 1999), またはシロガネダラ (Pacific hake) 稚魚の加入量の推定 等に応用されており (Mullin et al. 2000), その有用性が 証明されている.

本研究は、西部北太平洋155°E線の35°N~44°Nに おいて1993年から2004年の春季から夏季に採集され た表層(0~150 m)動物プランクトン試料を実験室型 OPCで解析し、同海域におけるサイズごとの動物プラ ンクトン現存量およびサイズ組成と現場水温(0~150 m積算平均水温)から計算された生産量の時空間変動パ ターンを明らかにすることを目的とした。

2. 材料と方法

2-1. 予備実験: OPC キャリブレーション

実験室型 OPC ユニット (Model OPC-1L: Focal Technologies Corp.) を組み込んだ OPC 実験流路 (CT&C 社

製, Beaulieu et al. 1999 をベースとしている)を使用 し、ホルマリン固定試料の計数およびサイズ測定の精度 を検証した (キャリブレーション). キャリブレーション 用の粒子として、サイズが既知の6種類の不透明な樹脂 製ビーズ(直径: 0.29, 0.54, 0.80, 1.03, 1.62 および 2.38 mm) 各 10 個を用いた. 過去の報告 (Herman 1988, Beaulieu et al. 1999, Zhang et al. 2000, Wood-Walker et al. 2000, 市川 2003) を参考に, 粒子が OPC を通過す る際の試水流量を10Lmin⁻¹に、測定時の粒子の密度 が10 counts sec⁻¹以下になるように設定した. この操 作条件の下,6種類の樹脂製ビーズ各10個をそれぞれ 5回ずつ OPC で測定し、測定された ESD と顕微鏡で測 定したビーズの直径を比較した. その結果,両者はほぼ 1:1の値を示し、相関係数は 99.7% であったことから OPC のサイズ解析の精度は十分高いことが証明された (Fig. 1a).

次に、ホルマリン固定された動物プランクトン試料に 対する OPC の測定特性を明らかにするため、各分類群、 発育段階およびサイズごとにソートした試料を用いて予

Fig. 1. Relationships between Equivalent Spherical Diameter (ESD) measured with OPC and Equivalent Circular Diameter (ECD) determined microscopically. As test particles, calibration beads (a), copepods (b), chaetognaths (c) and doliolids and salps (d) were used. The regression of (d) is of doliolids only. Vertical and horizontal bars acrossing means denote \pm SD. For gelatinous zooplankton taxa (chaetognaths, doliolids and salps), the effect of staining was also tested. Species abbreviation for (b): Eb=*Eucalanus bungii*, Mo=*Metridia okhotensis* (C6F), Mp=*Metridia pacifica* (C6F), Nc=*Neocalanus cristatus* (C5), Np=*Neocalanus plumchrus* (C5).

備実験を行った. 試料には本研究の対象海域(155°E線 に沿った 35°N~44°N) で採集されたカイアシ類(Neocalanus cristatus C5, N. plumchrus C5, Metaridia pacifica C6F, M. okhotensis C6F および Eucalanus bungii C5, C6F), ヤムシ類, ゼラチン質動物プランクトン (ウ ミタル類, サルパ類)を用いた. これらは顕微鏡下にて 体長 (Body Length: *BL*) および体幅 (Body Width: *BW*) を測定し, その値より楕円体を回転してできる立体の体 積(V)を Patoine et al. (2006)を参考にして次式

 $V = \frac{4}{3} \pi \left(\frac{BW}{2}\right)^2 \times \left(\frac{BL}{2}\right)$

より求めた. さらに, 求めた立体の体積 (V) と等しい体 積の球の直径を顕微鏡下実測 ECD (Equivalent Circular Diameter: ECD) として次式

$$\frac{4}{3}\pi \left(\frac{BW}{2}\right)^2 \times \left(\frac{BL}{2}\right) = \frac{4}{3}\pi \left(\frac{ECD}{2}\right)^3$$
$$ECD = \sqrt[3]{BW^2 \times BL}$$

により推定し、OPC による ESD と比較した.また、プ ランクトンの体が透明であることにより生じる OPC 測 定値の過小評価を考慮し、カイアシ類はメチレンブルー で、ヤムシ類およびゼラチン質動物はボラックスカーミ ン溶液で染色した後、OPC による複数回の測定を行い、

Fig. 2. Effects of repeated use (6–7 times) and staining/non-staining of 6 copepods on the ESD measurements with OPC. The measurement started with non-staining specimens (n=10) three times, followed by stained same specimens three-four times. Differences in average ESD values of successive measurements were significant only for *Neocalanus cristatus* C5 (one-way ANOVA and Fisher's PLSD, p < 0.05), which was due to breakage of body parts. Vertical bars acrossing means indicate \pm SD. *: p < 0.05 (Fisher's PLSD).

染色の有無 (stained, not stained) による影響を評価し た. その結果, いずれの分類群でも OPC による ESD は 幾分過小評価となった. すなわち,カイアシ類では顕微 鏡による実測値から計算した ECD の 99.5%,ヤムシ類 では約 83%,ウミタル・サルパ類では約 80% となった (Fig. 1b-d). 体が細長く体積:体幅比が大きいヤムシ類 や,体が脆弱で測定中に本来の樽状の形状を維持しにく いウミタル類において,OPC による ESD はより過小評 価される傾向が見られたことから (Fig. 1c, d),これら各 分類群による過小評価の程度の違いは分類群ごとの形態 および体の脆弱さによるものと考えられた.

染色の有無や、同一試料の反復測定による ESD への 影響はいずれの分類群においても見られなかったが、例 外として大型カイアシ類の Neocalanus cristatus C5 で は複数回の測定中に試料個体が破損し、その結果 ESD の過小評価が顕著に見られた (Fig. 2). Beaulieu et al. (1999) はオキアミ類のような大型動物プランクトンの 固定試料を OPC で測定する場合、眼や付属肢が本体よ り剥離し小粒子化することによって、動物本体 ESD の 過小評価および剥離小粒子による粒子数の過大評価が起 こりやすいと指摘している. 以上の予備実験の結果を踏 まえて、本研究では実験室型 OPC により動物プランク トン試料を解析する際に、試料の染色や複数回の測定と いった試料中の個体の破損を伴う操作は行わず、測定は 1 試料につき 1 回のみ行うものとした.

2-2. 動物プランクトン採集

解析に用いた試料は 1993~2004 年の 5 月下旬から 6 月下旬に 155°E 線上の 6~13 定点 (35°N~44°N) に おいて (Fig. 3),北海道大学練習船「北星丸」(1993 年~ 2001 年)および「おしょろ丸」(2002 年~2004 年) 航 海中に採集されたものである (Table 1).動物プランク トン試料は Norpac ネット (口径 45 cm,目合い 0.33 mm;元田 1957)を用いて,水深 150 m から表面まで の鉛直曳きにより採集した.ネット口輪には離合社製濾 水計を取り付け,その回転数より濾水量を求めた.試料 は 5% 中性ホルマリンで固定し,陸上実験室に持ち帰っ た.また,採集と同時に CTD (Neil Brown 社製 Mark III B型, Sea Bird 社製 SBE-9plus 型ないしは SBE-19 型 [船舶・期間により異なる])による水温と塩分の測定 を行った.水温と塩分はネット採集層の 0~150 m 深に ついて積算平均値を求めた.

2-3. 前処理・OPC による試料計測

ホルマリン固定した動物プランクトン試料は、陸上実

Fig. 3. The location of sampling stations $(35^{\circ}N-44^{\circ}N)$ along $155^{\circ}E$ in the western North Pacific. The stations were grouped into four regions in the present analysis, e.g. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.

Table 1. Zooplankton sampling period at $35^{\circ}N-44^{\circ}N$ along $155^{\circ}E$ in the western North Pacific during 1993–2004.

Year	1st visit (mainly late May-early June) (n)	2nd visit (mainly late June) (n)
1993	5-10 June (13)	24-30 June (11)
1994	5–11 June (13)	23-29 June (13)
1995	5-10 June (11)	23-30 June (13)
1996	6-11 June (10)	23-29 June (11)
1997	7–10 June (5)	25-29 June (13)
1998	4-10 June (9)	26 June–1 July (6)
1999	5–11 June (7)	27 June–2 July (9)
2000	6–9 June (9)	25-29 June (13)
2001	4–9 June (8)	23–28 June (9)
2002	22-27 May (13)	12–15 June (6)
2003	13-18 May (8)	6-12 June (11)
2004	11-16 May (12)	4–9 June (11)

Number of zooplankton samples are shown in the parentheses.

験室にて元田式プランクトン分割器 (Motoda 1959) を 用いて2分割した後,片方の副試料をアスピレーターに よる減圧下で目合い 0.1 mm メッシュ上に濾し取り,電 子天秤を用いて 0.01gの精度でその湿重量を測定した. 湿重量を測定した副試料(さまざまな動物プランクトン 種)は採集物の多寡に応じて1/2~1/32に分割した後, 実験室型 OPC を用いて各動物プランクトン個体数をサ イズクラス (ESD)に分別して計数した.前述の予備実験 の結果を踏まえ、(1)動物プランクトンが OPC を通過す る際の流量は約 10 L min⁻¹、(2)測定時の動物プランク トンの密度は 10 counts sec⁻¹以下、(3)動物プランク トン試料は染色せず 1 回のみの使用とする、の測定条件 を設定して解析を行った.また、OPC 解析に供した試料 は、優占した分類群および種を可能な限り同定し、記録 した.

2-4. データ処理

2-4-1. 出現個体数

OPC により計数された 4,096 サイズユニット毎の粒 子数 (*n*) と各試料における分割率 (*s*) および濾水量 (*F*, m³) から,各サイズユニットにおける単位水量当たりの 出現個体数 (*N*: inds. m⁻³)を求めた.

$N = \frac{n}{s \times F}$

また単位水量当たりの出現個体数に曳網水深 (150 m) を 乗じることで単位水柱 (0~150 m) 当たりの出現個体数 (inds. m⁻²) に換算した.

2-4-2. サイズ組成とバイオマス

4,096 サイズユニットに別けられた動物プランクトン 群集の湿重量 (Wet Mass, WM と省略) はそれぞれのサ イズユニットの ESD (mm) に相当する球の容積を求め, 次いで動物プランクトンの比重は水の比重と等しいと仮 定して,容積から WM を求めた. WM から DM (乾重 量, Dry Mass) への換算には,Yamaguchi et al. (2005) の報告にある北太平洋亜寒帯~亜熱帯の水深 150 m 以 浅で採集された動物プランクトン試料の水平分布の水分 含量 (84~96%) の中間値 (90%) を用いた (DM = 0.1× WM). この各サイズユニットにおける 1 個体た当りの DM 乾重量バイオマスに前述の出現個体数を乗じること により,単位水量もしくは単位水柱当たりの乾重量バイ オマス (mg DM m⁻³ または mg DM m⁻²) を計算した.

2-4-3. 生産量の推定

動物プランクトン1個体た当りの呼吸量を Ikeda (1985)の生息水温と体重を変数とした経験式

 $\ln R = 0.124 + 0.780 \ln B + 0.073T$

からまず計算した. ここで *R* は呼吸量 (µl O₂ ind.⁻¹ h⁻¹), *B* は体重 (mg DM ind.⁻¹), *T* (℃) は各採集点に おける 0~150 m 間の積算平均水温である.

次に、動物プランクトンの摂餌量 (I) を呼吸量 (R),次 いで成長量 (G) を I から推定した.その際、同化効率 ([G+R]/I) を 70%、総成長効率 (G/I) を 30% である と仮定した (Ikeda & Motoda 1978). この呼吸量を体重 量と水温より計算し,上記効率を用いて摂餌量と後述の 生産量を推定する方法は動物プランクトン群集の物質循 環における役割を定量化する方法として現在広く用いら れている (例えば Al-Mutairi & Landry 2001 や Roman et al. 2002 を参照). 摂餌量を1日当たりに摂餌す る炭素で表現すると, $I(mg C ind.^{-1} day^{-1})$ は以下の式 で表せる.

$$I = R \times \frac{12}{22.4} \times 0.97 \times \frac{1}{0.4} \times \frac{1}{1000} \times 24$$

すなわち,呼吸商 ([CO₂]/[O₂]) を 0.97 (タンパク質代 謝,Gnaiger 1983) と仮定し,炭酸ガス 1 mol (22.4 L) 中の炭素の重量 (12 g) を乗じることにより炭酸ガスと して排出される炭素量に換算したことになる.さらに同 化効率と総成長効率より I=R/0.4 とし,単位を μ g か ら mg へ換算し (÷1000),時間単位も1時間当たりか ら 1 日当たり (×24) に換算した.

成長量 (G: mg C ind.⁻¹ day⁻¹) は,前述の仮定(同化 効率: 70%,総成長効率: 30%)により以下の式で表さ れる.

$G = 0.3 \times I$

こうして得られた1個体当たりのG(=生産量)に、単 位水量もしくは単位水柱当たりの出現個体数(inds. m⁻³またはinds.m⁻²)を乗じて、4,096 サイズユニット における1日当たり、単位水量(もしくは単位水柱)当 たりのG(mg C m⁻³ day⁻¹または mg C m⁻² day⁻¹)を 得た. このようにして得られたサイズごとのG の総和 が群集生産量である.

2-5. 動物プランクトン群集の時空間変動

調査海域における動物プランクトン群集が時空間的に どのように変動しているのかを明らかにするために,出 現個体数,バイオマス,生産量それぞれについて,得ら れた 4,096 サイズユニットの結果を 6 つのサイズクラ ス (ESD が 0~1, 1~2, 2~3, 3~4, 4~5 mm および 5 mm 以上) ごとにまとめ,年と領域を 2 独立変数として two-way ANOVA による検定と Fisher's PLSD によ るポストホックテストを行った.

この検定のため、観測定点は北より3点ずつを一領域 として緯度により便宜的に区分し、それぞれ"亜寒帯フ ロント"(>42°N, Subarctic Front: SF)、"移行領域" (40°N~42°N, Transition Domain: TR)、"亜寒帯境界" (38°N~40°N, Subarctic Boundary: SB) および"亜熱 帯域"(<38°N, Subtropic Current System: ST) と呼称 することとした (Fig. 3). これらの領域区分の呼称は

Fig. 4. Comparison of zooplankton wet mass estimated with OPC and those directly measured. Zooplankton samples used were those collected with Norpac nets, excluding those dominated by gelatinous zooplankton (cf. Fig. 8).

Fig. 5. Temperatures (top) and salinities (bottom) averaged over the 0-150 m water column at stations along $155^{\circ}E$ during late May-early June and late June of 1993-2004. Solid horizontal bars across the means denote \pm SDs. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.

Favorite et al. (1976) と安間ほか (1990) を参考にした. これらの領域区分は必ずしも水理環境特性(水温・塩分 の鉛直分布パターン)による通常の区分と一致していな いが,結果で述べるようにそれぞれの領域について経年 変動はあるものの,亜寒帯フロント(SF)および亜寒帯 境界(SB)の位置はそれぞれの緯度範囲(亜寒帯フロン トは >42°Nで亜寒帯境界は 38°N~40°N)に見られ, 上記呼称の妥当性が示されている.

また統計検定の際,観測定点の最南端にあたる35°N は,観測の行われなかった年が多かったため解析から除 いた.また,採集頻度の低かった(全部で5定点のみ, Table 1)1997年における5月下旬~6月上旬のデータ は解析から除外した.

3-1. OPC による湿重量解析

本研究で使用した動物プランクトン試料のうち, ゼラ チン質動物プランクトンが優占した試料を除いたもの

Table 2. Results of variance analysis (two-way ANOVA) on the abundance, biomass and calculated production for size-fractionated zooplankton at four regions along 155° E during late May–early June of 1993–2004.

	;	Source of va	riation
	Year	Region	Year×Region
Abundance			
Total	NS	*	NS
0-1 mm	NS	**	NS
1–2 mm	NS	**	NS
2–3 mm	**	**	NS
3–4 mm	NS	**	NS
4–5 mm	NS	*	NS
$>5~\mathrm{mm}$	NS	NS	NS
Biomass			
Total	*	**	NS
0-1 mm	NS	NS	NS
1–2 mm	**	**	NS
2–3 mm	**	**	NS
3–4 mm	NS	**	NS
4–5 mm	NS	*	NS
$>5~\mathrm{mm}$	NS	NS	NS
Production			
Total	*	*	NS
0-1 mm	NS	**	NS
1–2 mm	NS	NS	NS
2–3 mm	**	**	NS
3–4 mm	NS	*	NS
4–5 mm	NS	NS	NS
$>5~\mathrm{mm}$	NS	NS	NS

*: p<0.05, **: p<0.01, NS: not significant.

(n = 234)について実測された湿重量 (g WM m⁻³) と OPC による測定 (4,096 サイズユニットの総計) から推 定された湿重量 (g WM m⁻³) を比較して, OPC 解析の 妥当性について検討した (Fig. 4). その結果, OPC によ る湿重量は実測の湿重量と比較してわずかに過大評価で あったものの (約 1.05 倍),両者の間にはきわめて有意 な相関がみられ (p<0.0001), OPC による解析の妥当性 が示された.

3-2. 動物プランクトン群集の水平分布構造,季節および経年変動

水平分布,季節および経年変動の解析を行った 1993 年から 2004 年の 5 月下旬~6 月上旬および 6 月下旬に おける 155°E 線に沿った各定点の 0~150 m 積算平均 水温と積算平均塩分を Fig. 5 に示す.水温と塩分とも に高緯度の定点で低温,低塩分で低緯度ほど高温,高塩 分であった.水温および塩分の標準偏差は亜寒帯フロン ト (SF)と亜寒帯境界 (SB) において,移行域 (TR)と亜 熱帯域 (ST) のそれらより2倍ほど大きく,本研究にお ける領域分けの妥当性が示された.同一定点においては 5月から6月になるにつれて高水温,高塩分になる様子 がとくに移行域で見られた.他の領域では季節による水 温と塩分の変動は必ずしも明瞭ではなかった.

動物プランクトン出現個体数,バイオマスおよび生産 量における各領域および経年変動の有無を5月下旬~6 月上旬の採集データについて two-way ANOVA で解析 したところ,出現個体数では6サイズクラス(0~>5 mm ESD)のほとんどにおいて領域間に有意な差が見ら れ,2~3 mm のサイズクラスには年変動も観察された (Table 2).バイオマスでも多くのサイズクラスで領域間 の差が見られたが,各サイズを総計した全動物プランク トンバイオマスには年変動も見られた.0~1,1~2 およ び 2~3 mm のサイズクラスにも有意な年変動が検出さ れたことから,これらのサイズクラスの年変動が全動物

Table 3. Between-region differences in the abundance, biomass and production of size-fractionated at each region along 155°E during late May-early June of 1993-2004 tested by two-way ANOVA ("Difference", see Table 2) and Fisher's PLSD. Any region not connected by the underline are significantly different.

Zooplankton		Reg	gion		D:0	Region			
Size class	SF	TR	SB	ST	Difference	(Fi	sher's PL	SD, $p < 0.0$	05)
Abundance (inds. m ⁻²)									
Total	69,713	52,754	86,926	61,556	*	TR	ST	SF	SB
0–1 mm	49,933	34,435	73,459	53,780	**	TR	SF	ST	SB
1–2 mm	12,751	10,131	9,506	6,501	**	ST	SB	TR	SF
2–3 mm	6,044	6,923	3,320	1,064	**	ST	SB	SF	TR
3–4 mm	866	1,113	591	198	**	ST	SB	SF	TR
4–5 mm	105	109	39	11	*	ST	SB	SF	TR
>5 mm	14	42	10	2	NS				
Biomass (mg DM m^{-2})									
Total	9,249	10,183	5,927	2,656	**	ST	SB	SF	TR
0–1 mm	558	371	602	470	NS				
1–2 mm	2,271	2,093	1,576	938	**	ST	SB	TR	SF
2–3 mm	3,977	4,515	2,306	776	**	ST	SB	SF	TR
3–4 mm	1,848	2,287	1,189	365	**	ST	SB	SF	TR
4–5 mm	442	474	162	48	*	ST	SB	SF	TR
>5 mm	153	443	92	59	NS				
Production (mg C $m^{-2} day^{-1}$)									
Total	173	219	192	134	*	ST	SF	SB	TR
0–1 mm	21	19	44	44	**	TR	SF	ST	SB
1–2 mm	50	56	59	48	NS				
2–3 mm	71	95	60	29	**	ST	SF	SB	TR
3–4 mm	24	37	25	12	*	ST	SF	SB	TR
4–5 mm	5	7	3	1	NS				
>5 mm	1	5	1	1	NS				

*: p<0.05, **: p<0.01, NS: not significant.

SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.

two-way /	ANOVA ("Differer	ıce", see	Table 2) and Fis	sher's PI	SD. An	y year n	ot conne	ected by	the und	erline are s	ignifi	cantly	diffe	rent.			2			
Zooplankton						Year						Difforence					Ye	ar				
Size class	93	94	95	96	98	66	00	01	02	03	04	DIIIerenice			0	Fisher	's PL	SD, <i>p</i>	< 0.05	()		
Abundance	(inds. m ⁻	-2)																				
Total	43,751	85,892	62,500	53, 593	65,756	74,583	73,973	91,877	49,893	71,609	71,682	NS										
0-1 mm	$27,\!234$	74,897	52,863	$41,\!438$	46,680	62,080	57,000	68,910	39, 273	54,422	57,124	NS										
1-2 mm	10,011	8,140	6,955	7,220	11,071	8,570	10,962	14,281	6,328	12,185	11,223	NS										
2-3 mm	5,286	2,531	2,257	4,090	7,127	3, 329	5,298	7,790	3,661	3,446	2,904	*	95	94	04) 66	3 0	2 96	6	00	98	01
3-4 mm	1,149	303	376	760	808	579	637	811	567	1,229	393	NS										
4-5 mm	59	12	48	76	67	22	66	77	52	215	34	NS										
>5 mm	13	10	1	6	с С	4	10	7	12	112	2J	NS										
Biomass (m	g DM m ⁻	2)																				
Total	8,476	4,303	4,062	6,390	9,173	5,523	7,611	10,530	5,507	9,888	5,575	*	95	94	02	0 66	4 9	00	93	98	03	01
0-1 mm	357	508	495	355	522	543	530	734	414	527	521	NS										
1-2 mm	1,791	1,353	1,066	1,375	2,075	1,363	1,806	2,614	1,106	2,218	2,145	*	95	02	94	99 9	6 9	3 0(96 (04	03	01
2-3 mm	3,601	1,659	1,517	2,703	4,588	2,410	3,633	4,970	2,490	2,318	1,938	*	95	94	04	03 5	6	2 96	6	00	98	01
3-4 mm	2,306	631	771	1,570	1,697	1,083	1,274	1,675	1,158	2,700	677	NS										
4–5 mm	250	55	200	304	263	87	267	337	225	960	151	NS										
>5 mm	170	96	13	83	28	38	100	201	115	1165	42	NS										
Production	(mg C m ⁻	⁻² day ⁻¹)	_																			
Total	209	138	117	151	223	166	209	244	133	230	153	*	95	02	94	96 (14 9	00	93	98	03	01
0-1 mm	22	38	34	25	32	37	36	37	24	35	32	NS										
1-2 mm	58	47	36	41	63	48	60	70	31	69	62	NS										
2-3 mm	78	40	32	55	98	58	85	105	52	54	43	*	95	94	04	02 (3 9	5 96	95	00	98	01
3-4 mm	45	11	12	24	27	21	23	28	21	46	13	NS									1	
4-5 mm	4	1	2	4	က	1	4	4	က	13	2	NS										
$>5~\mathrm{mm}$	လ	1	0	1	0	1	П	0	1	13	0	NS										
*: $p < 0.05$	**: $p < 0$.01, NS:	not sig.	nificant.																		

Table 4. Between-year differences in the abundance, biomass and production of size-fractionated at each region along 155°E during late May-early June tested by

横井・山口・池田: OPCによる西部北太平洋の動物プランクトン群集構造解析

Fig. 6. Abundance (top), biomass (middle) and calculated production (bottom) of zooplankton (all left, mean \pm SD) and its size (ESD) composition (all right) at the four regions (SF, TR, SB and ST) along 155°E during late May–early June of 1993–2004. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.

プランクトンバイオマスの年変動に起因していることが 示唆された (Table 2). 全動物プランクトン生産量にも 有意な領域および年変動が観察された. 各サイズクラス について見ると, ESD が 2~3 mm のサイズクラスにお いて領域および年ともに有意な変動が見られ (p<0.01), このサイズクラスの変動が全動物プランクトン生産量の 領域差および年変動をもたらしたことがうかがえた (Table 2).

領域間の変動 (水平分布) をさらに Fisher's PLSD の

ポストホックテストにより解析したところ,移行領域 (TR)においてバイオマスと生産量が高いにもかかわら ず,出現個体数が最も少ないことが明らかになった (Table 3). この TR においてバイオマスと生産量が高い にもかかわらず出現個体数が最も少ない傾向は,11年

Table 5. Results of variance analysis (two-way ANOVA) on the abundance, biomass and calculated production for size-fractionated zooplankton at four regions along 155° E during late June of 1993–2004.

	Source of variation		
	Year	Region	Year×Region
Abundance			
Total	*	NS	**
0-1 mm	**	NS	**
1–2 mm	NS	**	*
2–3 mm	NS	**	NS
3–4 mm	NS	**	NS
4–5 mm	NS	**	NS
$>5\mathrm{mm}$	NS	NS	NS
Biomass			
Total	NS	**	NS
0-1 mm	NS	NS	**
1–2 mm	NS	**	**
2–3 mm	NS	**	NS
3–4 mm	NS	**	NS
4–5 mm	NS	**	NS
$>5~\mathrm{mm}$	NS	NS	NS
Production			
Total	NS	NS	**
0–1 mm	*	**	**
1–2 mm	NS	**	**
2–3 mm	NS	**	NS
3–4 mm	NS	**	NS
4–5 mm	NS	*	NS
$>5~\mathrm{mm}$	NS	*	NS

*: p<0.05, **: p<0.01, NS: not significant.

間の平均でも明瞭にうかがえ、これはTRにおいて ESD が 2~3 mm のサイズクラス(=*Neocalanus plumchrus* C5 のサイズ, Fig. 1b を参照)が多かったためで ある (Fig. 6). また、各領域の生産量は 134~219 mg C $m^{-2} day^{-1}$ であり、亜熱帯域 (ST) において低かった.

経年変動をさらに Fisher's PLSD のポストホックテ ストにより解析したところ, 1993 年, 1998 年, 2001 年 および 2003 年においてバイオマスと生産量が高いこと が明らかになった (Table 4). バイオマスと生産量の経 年変動をサイズクラスごとに見ていくと, 2~3 mm サ イズクラスの増減パターンと一致していない全動物プラ ンクトンの経年変動は, ESD が 5 mm 以上の大型サイ ズクラスが全動物プランクトンの結果に大きく影響して いることが示された (Fig. 7). サンプルを確認したとこ ろ, 2003 年は大型なサルパ類 (*Salpa fusiformis*) がと くに移行領域 (TR) に多く出現していた.

同様に,領域および年変動の有無を1993~2004年の 6月下旬のデータについて解析を行ったところ,0~1, 1~2 mm といった小型な ESD サイズクラスにおいて, 出現個体数,バイオマスおよび生産量のいずれにも有意 な交互作用 (Year×Region)が認められた (Table 5). こ れは,交互作用が見られなかった前述の5月下旬~6月 上旬のデータ解析結果 (Table 2) に比べて,きわめて対 照的である.交互作用の見られた項目 (Total,0~1また

Fig. 8. Year-to-year variations in zooplankton abundance (left), biomass (middle) and calculated production (right) of "total" (a), "0–1 mm ESD" (b) and "1–2 mm ESD" (c) size zooplankton at four regions, along 155° E during late June, which significant "Year×Region" interactions were detected (cf. Table 5). For prominent peaks, dominant zooplankton taxa are indicated.

は 1~2 mm 各サイズの出現個体数, バイオマスおよび 生産量)の各領域における年変動を Fig.8 に示す.動物 プランクトンのうち,尾虫類,ウミタル類,サルバ類と いった無性世代を持ち,速やかに成長・繁殖するゼラチ ン質動物プランクトンが特定の領域および年に大量発生 し,その結果 Year×Region 交互作用がもたらされたと 判断された.局所的なゼラチン質動物プランクトンの卓 越によって特徴づけられたのは,1994年の SB におけ るサルパ類およびウミタル類,1996年の TR における 尾虫類,1999年の SB におけるウミタル類などである (Fig. 8).

また、6月下旬における t wo-way ANOVA の解析結 果 (Table 5) を5月下旬~6月上旬の結果 (Table 2) と 比較したところ、5月下旬~6月上旬にはバイオマスと 生産量において全サイズクラス総和で経年変動が見られ たが、6月下旬では少数のサイズクラスの出現個体数と 生産量を除いて経年変動は検出されなかった (Tables 2, 5).

4. 考 察

4-1. 動物プランクトンサイズ組成の緯度,季節および 経年変動

本研究では155°E線に沿った35°Nから44°Nの間 を緯度により便宜的に4海域に区分した (Fig. 3). 動物 プランクトン群集の水平(緯度)分布の特徴として挙げ られるのは,移行領域 (TR,40°N~42°N) で全動物プラ ンクトン出現個体数が4領域中で最も低いのに対して, バイオマスと生産量が最も高いことである (Fig. 6). こ れは Fig. 6 から明らかなように、TR において ESD が 2~3 mm, 3~4 mm および 4~5 mm といった大型な サイズクラスが優占し,他領域で卓越した小型サイズク ラスが少なかったためである. ESD が 2~3 mm という サイズクラスは Eucalanus bungii C6F や Neocalanus plumchrus C5 といった、亜寒帯性の大型カイアシ類が 相当する (Fig. 1b). つまり, 155°E 線に沿った 35°N か ら 44°N の海域は,移行領域 (TR, 40°N~42°N) におい て大型カイアシ類が多いことによって特徴づけられてい ることがわかる

経年変動においても、5月下旬~6月上旬の試料では 全動物プランクトンバイオマスと生産量に有意な変動が 見られ、いずれも1993年、1998年、2001年および 2003年に高いことが明らかとなった(Table 4). 各サイ ズクラスのうち2~3 mm に頻繁に有意な年変動が見ら れたことから(Table 4),上記全動物プランクトンバイ

Fig. 9. Relationship between "total" and "2–3 mm ESD" zooplankton, in terms of biomass (a) and production (b), based on the data obtained during late May–early or June of 1993–2004.

オマスと生産量の経年変動は 2~3 mm サイズクラスの 変動によってもたらされていることが示唆された. その ため、バイオマスと生産量について、ESD が 2~3 mm のサイズクラスと全動物プランクトンの関係を観察した ところ、いずれも有意な正の関係があることがわかった (Fig. 9). 寄与率 (r^2) が 0.65 から 0.71 であったことか ら、全動物プランクトンバイオマスおよび生産量の経年 変動の 65% から 71% は、ESD が 2~3 mm のサイズ クラスの年変動によって説明できることが判明した. つ まり、155°E 線に沿った 35°N から 44°N の海域の動物 プランクトンバイオマスと生産量の経年変動は、大型カ イアシ類の年ごとの多寡によって左右されていることに なる.

上述の動物プランクトンの水平分布および経年変動は 5月下旬~6月上旬の結果であった.一方6月下旬には, 5月下旬~6月上旬には見られなかったYear×Region の「交互作用」が頻繁に観察された (Table 5). この交互 作用は,「経年変動パターンが各領域によって異なる」こ とを意味している. 交互作用が見られた試料について観

Mon Dec 24 14:58:02 2007 コンポジット Page 12

Fig. 10. Vertical distribution patterns of temperature and salinity at the station/year when gelatinous zooplankton were dominated (closed circles) as compared with those of 12-year means during 1993–2004 (open circles). Horizontal bars for the latter denote \pm SD. SB: Subarctic Boundary, TR: Transition Domain.

察すると、いずれもゼラチン質動物プランクトン(サル パ類、ウミタル類および尾虫類)が優占していた(Fig. 8). つまり、6月下旬の動物プランクトンは、局所的なゼ ラチン質動物プランクトンの優占によって特徴づけられ ることがわかった.これは5月下旬~6月上旬の試料で は見られなかった特徴である.6月下旬になってゼラチ ン質動物プランクトンが局所的に大発生するようになっ た理由を以下に考察する.

サルパ類, ウミタル類および尾虫類といったゼラチン 質動物プランクトンは有性世代とともに無性世代を持 ち,繁殖に適した環境になれば後者により短期間に個体 群を増やすことができる(Bone 1998 を参照). これら ゼラチン質動物プランクトンが多かった年の水温と塩分 の鉛直分布と,同緯度における12年平均との比較を 行った(Fig. 10). 1994年の亜寒帯境界(SB, 38°N~ 40°N)にてサルパ類とウミタル類が多かった年は,いず れの定点も例年より高水温,高塩分で,水深40m以浅 に躍層が発達している様子がうかがえた. 1996年の移 行領域(TR)での尾虫類の卓越は低塩分で特徴づけら れ,同じく水深40m以浅に躍層の発達がうかがえた. 1999年の亜寒帯境界 (SB) では例年よりも水深 20 m 以 浅の躍層の発達が特徴として挙げられる (Fig. 10). つま り,6月下旬にゼラチン質動物プランクトンが卓越した 状況下では,いずれも例年よりも躍層が発達しているこ とが特徴として挙げられる.これらの結果から,5月下 旬から6月上旬には見られず,6月下旬の躍層が発達し たときにのみ見られるゼラチン質動物プランクトンの卓 越は,おそらく「躍層の発達→表層への栄養塩供給制限 →ピコサイズなど小型植物プランクトンの優占→小型粒 子を効率良く摂餌できるゼラチン質動物プランクトンが 優占」というメカニズムが働いた結果ではないかと推測 される.この仮説の検証には,動物プランクトン試料採 集だけではなく,植物プランクトン試料採集が今後必要 である.

4-2. 西部北太平洋における動物プランクトン群集の時 空間変動特性

155°E線に沿った35°Nから44°Nの動物プランク トンのバイオマス・生産量の水平分布,鉛直分布の経年 変動および毎年5月下旬~6月上旬および6月下旬にか けての群集構造の短期変動の模式図を示す(Fig.11).動 物プランクトンバイオマス・生産量いずれの水平分布も

Fig. 11. Schematic diagrams showing year-to-year variations in zooplankton biomass and production as affected by the abundance of *Neocalanus* (2–3 mm ESD), and 3D images for spatial-temporal changes in zooplankton community structure in the western North Pacific as revealed by OPC analysis.

移行領域 (TR, 40°N~42°N) において大型カイアシ類 の寄与が大きく (Fig. 6), またその鉛直分布は, 水深 10~40 m で大型カイアシ類 Neocalanus cristatus や N. *plumchrus* C5 が多いことが特徴である(横井未発表). 動物プランクトンバイオマスと生産量には経年変動が見 られ、大型カイアシ類 Neocalanus 属の多寡によって経 年変動が引き起こされていた (Fig. 9). 北太平洋亜寒帯 域の動物プランクトンバイオマスにおいて, これら大型 カイアシ類が主要構成群であることは、これまでいくつ かの研究で明らかにされている (例えば Tadokoro et al. 2005 を参照). 6月下旬に季節が進むにつれて動物プ ランクトンの群集構造は大きく変化し、局所的なゼラチ ン質動物プランクトンの優占が見られるようになる (Fig. 8). このメカニズムとして「躍層の発達→表層への 栄養塩供給制限→ピコサイズなど小型植物プランクトン の優占→小型粒子を効率良く摂餌できるゼラチン質動物 プランクトンが優占」という仮説を提唱した.

西部北太平洋全域にわたって、単位水柱当たりの動物 プランクトン生産量、とくに植食者群集の食物要求量は 基礎生産量と正比例することが知られている(Taniguchi 1973,谷口 1981).今回、OPC によって得られた 動物プランクトンのサイズ組成から計算された生産量 $(134~219 \text{ mg C m}^{-2} \text{ day}^{-1})$ は、当海域における過去 の推定値 $(107~232 \text{ mg C m}^{-2} \text{ day}^{-1},$ Taniguchi 1973)の範囲内にある。また大型の動物プランクトンは その糞粒も大型なため、鉛直的な物質輸送量を増加させ る (Ducklow et al. 2001).5月下旬から6月上旬にかけ ては移行領域 (TR)において動物プランクトン生産量が 高いことに加えて、大型のサイズクラスが優占すること により (Fig. 6)、その鉛直的な物質輸送量が増加するこ とが推測される。

北太平洋(主に亜寒帯域)における動物プランクトン バイオマスの経年変動の要因としてカラフトマスの増減 (Sugimoto & Tadokoro 1997),レジームシフト (Sugimoto & Tadokoro 1998),エルニーニョ (Sugimoto et al. 2001)や,10年〜数十年周期の気候変動 (Chiba et al. 2006)などが報告されている.本研究における経年変 動 (バイオマスと生産量が 1993年,1998年,2001年 および 2003年に高い)は、必ずしもこれら過去の研究 結果と一致しなかったが、それは調査期間が 1993〜 2004年(12年)と短く、長期経年変動パターンが十分 な精度で検出されなかった可能性もある(例えば Chiba et al. [2006]では約50年間の資料について解析).今 後、OPC による解析をさらに多くの歴史的動物プラン クトン試料について行うことにより、広大な北太平洋に おける動物プランクトン群集のさまざまなスケールでの 時空間的動態が明らかになることが期待される.

6. 謝辞

本稿を終えるにあたり、本研究に際して数々のご助言 と本稿のご高閲を賜りました北海道大学大学院水産科学 研究院の岸 道郎教授と志賀直信教授に厚く御礼申し上 げます.本研究に用いた試料や観測データの採集に際 し、終始多大なご協力をいただいた北海道大学練習船 「おしょろ丸」および「北星丸」の船長、乗組員の方々お よび同乗された研究者各位に心から御礼申し上げます. また、OPCの使用に際し、独立行政法人水産総合研究セ ンター中央水産研究所の市川忠史博士には数々のご協力 とご助言をいただきました.深く感謝いたします.本研 究は科学研究費補助金(基盤研究(S)16108002)「気候

引用文献

変化と人間活動に応答する海洋生態系の歴史的変遷と将

来予測(代表:岸 道郎)」の成果の一部です.

- Al-Mutairi, H. & M. R. Landry 2001. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. *Deep-Sea Res. II* 48: 2083–2103.
- 安間 元・増田紀義・小林源司・山口秀一・目黒敏美・佐々木 成二・大谷清隆 1990. 夏季北太平洋 180 度線移行領域周辺 の海洋構造とその変動.北大水産彙報 41:73-88.
- Beaulieu, S. E., M. M. Mullin, V. T. Tang, S. M. Pyne, A. L. King & B. S. Twining 1999. Using an optical plankton counter to determine the size distribution of preserved zooplankton samples. *J. Plankton Res.* 21: 1939–1956.
- Bone, Q. 1998. *The Biology of Pelagic Tunicates*. Oxford University Press, Oxford, 362 pp.
- Boyd, P. W. & P. P. Newton 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? *Deep-Sea Res. I* 46: 63–91.
- Chiba, S., T. Ono, K. Tadokoro, T. Midorikawa & T. Saino 2004. Increased stratification and decreased lower trophic level productivity in the Oyashio region of the North Pacific: A 30-year retrospective study. *J. Oceanogr.* 60: 149–162.
- Chiba, S., K. Tadokoro, H. Sugisaki, & T. Saino 2006. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. *Global Change Biol.* 12: 907–920.
- Ducklow, H. W., D. K. Steinberg & K.O. Buesseler 2001. Upper ocean carbon export and the biological pump. Oceanography 14: 50–58.
- Favorite, F., J. A. Dodimead & K. Nasu 1976. Oceanography of the subarctic Pacific region, 1960–1971. Bull. Int. North Pacific Fish. Comm. 33: 1–87.
- Gallienne, G. P., D. V. P. Conway, J. Robinson, N. Naya, J. S. William, T. Lynch & S. Meunier 2004. Epipelagic mesozooplankton distribution and abundance over the Mas-

carene Plateau and Basin, south-western Indian Ocean. J. Mar. Biol. Ass. U.K. 84: 1–8.

- Gnaiger, E. 1983. Calculation of energetic and biochemical equivalents of respiratory oxygen consumption, pp. 337– 345. In *Polarographic Oxygen Sensors* (eds. Gnaiger, E. & H. Forstner). Springer, Berlin.
- Herman, A. W. 1988. Simultaneous measurement of zooplankton and light attenuance with new optical plankton counter. *Cont. Shelf Res.* 8: 205–221.
- Herman, A. W. 1992. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. *Deep-Sea Res.* **39A**: 395–415.
- Herman, A. W., N. A. Cochrane & D. D. Sameoto 1993. Detection and abundance estimation of euphausiids using an optical plankton counter. *Mar. Ecol. Prog. Ser.* 94: 165– 173.
- 市川忠史 2003. プランクトンセンサーで何がわかるか―水産 海洋学の視点から. 日本プランクトン学会報 50: 29-35.
- Ikeda, T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. *Mar. Biol.* 85: 1–11.
- Ikeda, T. & S. Motoda 1978. Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas. *Fish. Bull.* **76**: 357–367.
- Labat, J. Ph., P. Mayzaud, S. Dallot, A. Errhif, S. Razouls & S. Sabini 2002. Mesoscale distribution of zooplankton in the Sub-Antarctic Frontal system in the Indian part of the Southern Ocean: A comparison between optical plankton counter and net sampling. *Deep-Sea Res. I* **49**: 735–749.
- Mackas, D. L., R. Goldblatt & A. G. Lewis 1998. Interdecadal variation in developmental timing of *Neocalanus plumchrus* populations at Ocean Station P in the subarctic North Pacific. *Can. J. Fish. Aquat. Sci.* 55: 1878–1893.
- Michaels, A. F. & M. V. Silver 1988. Primary production, sinking fluxes and microbial food web. *Deep-Sea Res.* 35A: 473–490.
- 元田 茂 1957. 北太平洋標準プランクトンネットについて.日本プランクトン研連報 4: 13-15.
- Motoda, S. 1959. Devices of simple plankton apparatus. *Mem. Fac. Fish. Hokkaido Univ.* **7**: 73-94.
- Mullin, M. M., E. Goetze, S. E. Beaulieu & J. M. Lasker 2000. Comparisons within and between years resulting in contrasting recruitment of Pacific hake (*Merluccius productus*) in the California Current System. *Can. J. Fish. Aquat. Sci.* 57: 1434–1447.
- Nogueira, E., G. González-Nuevo, A. Bode, M. Varela, X. A. G. Morán & L. Valdés 2004. Comparison of biomass and size spectra derived from optical plankton counter data and net samples: application to the assessment of mesoplankton distribution along the Northwest and North Iberian Shelf. *ICES J. Mar. Sci.* 61: 508–517.
- 小達和子 1994. 東北海域における動物プランクトンの動態と 長期変動に関する研究. 東北水研報告 56: 115-173.
- Ohman, M. D. & E. L. Venrick 2003. CalCOFI in a Changing

Ocean. Oceanography 16: 76-85.

- Patoine, A., B. Pinel-Alloul, G. Methot & M.-J. Leblanc 2006. Correspondence among methods of zooplankton biomass measurement in lakes: effect of community comparison on optical plankton counter and size-fractionated seston data. J. Plankton Res. 28: 695–705.
- Roman, M. R., H. G. Dam, R. L. Borgne & X. Zhang 2002. Latitudinal comparisons of equatorial Pacific zooplankton. *Deep--Sea Res. II* 49: 2695–2711.
- Sheldon, R. W., W. H. Sutcliffe Jr. & M. Paranjape 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd. Can. 34: 2344–2353.
- Sprules, W. G., E. H. Jin, A. W. Herman & J. D. Stockwell 1998. Calibration of an optical plankton counter for use in fresh water. *Limnol. Oceanogr.* 43: 726–733.
- Sugimoto, T. & K. Tadokoro 1997. Interannual-interdecacal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. *Fish. Oceanogr.* 6: 74–93.
- Sugimoto, T. & K. Tadokoro 1998. Interdecadal variations of plankton biomass and physical environment in the North Pacific. *Fish. Oceanogr.* 7: 289–299.
- Sugimoto, T., S. Kimura & K. Tadokoro 2001. Impact of El-Niño events and climate regime shift on living resources in the western North Pacific. *Prog. Oceanogr.* 49: 113–127.
- Tadokoro, K., S. Chiba, T. Ono, T. Midorikawa & T. Saino 2005. Interannual variation in *Neocalanus* biomass in the Oyashio waters of the western North Pacific. *Fish. Ocean*ogr. 14: 210–222.
- Taniguchi, A. 1973. Phytoplankton-zooplankton relationships in the western Pacific Ocean and adjacent seas. *Mar. Biol.* 21: 115–121.
- 谷口 旭 1981. 太平洋亜寒帯前線海域における低次生物生産 の特性と漁場環境. 北大水産北洋研業績集,特別号: 23-35.
- van der Meeren, T. & T. Næss 1993. How does cod (*Gadus morhua*) cope with variability in feeding conditions during early larval stages? *Mar. Biol.* **116**: 637–647.
- Wood-Walker, R. S., C. P. Gallienne & D. B. Robins 2000. A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance. *J. Plankton Res.* 22: 473–483.
- Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, M. Maeda, J. Ishizaka, T. Ikeda & M. M. Takahashi 2005. Biomass and chemical composition of net-plankton down to greater depth (0–5,800 m) in the western North Pacific Ocean. *Deep-Sea Res. I* 52: 341–353.
- Zhang, X., M. Roman, A. Sanford, H. Adolf, C. Lascara & R. Burgett 2000. Can an optical plankton counter produce reasonable estimate of zooplankton abundance and biovolume in water with high detritus? *J. Plankton Res.* 22: 137–150.