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Abstract

Condition factor index [CFI = 1000 x DW/(PL)*; DW: dry weight, PL: prosome length], water content, carbon (C),
nitrogen (N), ash and energy content were determined on a total of 69 copepod species caught from the mesopelagic
(500-1000 m), upper-bathypelagic (1000-2000 m), lower-bathypelagic (2000-3000 m) and abyssopelagic (3000-5000 m)
zones of the western subarctic Pacific. Resultant data were grouped into these four sampling zones, four developmental
stage/sex categories (C4, C5 and C6 females and males), three feeding types (carnivore, detritivore and suspension feeder),
or two reaction speed groups by the presence/absence of myelinated sheath enveloping axons (fast and slow reacting
species). Zone-structured data showed the overall ranges were 3.8—4.6 mm for PL, 1.6-2.6 mg for DW, 21.4-25.0 for CFI,
75.0-78.6% of wet weight (WW) for water, 51.3-53.7% of DW for C, 7.7-8.8% of DW for N, 6.2-7.0 (by weight) for C/N,
6.9-9.6% of DW for ash and 25.3-27.4Jmg~' DW for energy. Among these components, N and ash exhibited significant
between-zone differences characterized by gradual decrease downward for the former, and only the upper-bathypelagic
zone > abyssopelagic zone for the latter. Stage/sex-structured data showed no significant differences among them, but
energy content of C5 was higher than that of C6 females. From the analyses of feeding type-structured data, carnivores
were shown to have lower water, N, ash, but higher C, C/N and energy contents than suspension feeders do. Reaction
speed-structured data indicated that slow-reacting species have significantly higher water but lower CFI, C, N and energy
contents than fast-reacting species. Designating these grouping criteria, PL and DW as independent variables, the
attributes of these variables to the CFI, chemical composition or energy contents were evaluated by stepwise-multiple
regression analysis, showing the most pronounced effect of suspension-feeder, followed by the presence of myelinated
sheath, DW, C6 females and the abyssopelagic zone. Further analysis of zone-structured data, by adding epipelagic
copepod data from identical thermal habitats (Arctic/Antarctic waters), revealed a more marked decline in N content from
the epipelagic zone to the abyssopelagic zone, accompanied by an increase in C/N ratios downward. The decline in N
( = protein or muscle) contents with depth cannot be explained by the ““visual interactions™ hypotheses being proposed for
the metabolism of pelagic visual predators, but is consistent with the “predation-mediated selection’ hypothesis for the
metabolism of pelagic copepods.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Among various taxa occurring as zooplankton in
the pelagic realm of the world ocean, copepods are
the most numerous (55-95% of individuals in
samples, Longhurst, 1985). Because of their ubiqui-
tous distribution through the ocean interior, high
abundance and trophic importance in pelagic food
webs, information about their physiology and
biochemistry is a basis for our better understanding
of their roles in energy flow and biogeochemical
cycles in the ocean.

While studies of elemental composition of marine
zooplankton go back to the early 1910s (Vinogra-
dov, 1953), the first comprehensive study on the
carbon (C) and nitrogen (N) composition of marine
zooplankton is that of Omori (1969), who deter-
mined the composition for 33 species (including 15
copepod species) predominating in the North Pacific
Ocean. Since then, Ikeda (1974) reported C and N
content of a total of 111 zooplankton species
(including 41 copepod species) from temperate—tro-
pical waters of the Pacific, Indian and Atlantic
Oceans. Bamstedt (1986) reviewed literature data on
chemical composition (not only C and N, but also
water, ash, protein, lipid, carbohydrate, and energy
contents) of marine pelagic copepods, separating
data from three habitats (high, low and medium
latitude seas) and splitting each habitat further into
two depth strata (“surface” and ‘“‘deep”). His
analysis showed higher C or energy accumulation
(in the form of lipids) by copepods inhabiting higher
latitude seas, a pattern especially marked in the
“surface” dataset but less so in the “deep” datasets.
Nevertheless, the differences between “‘surface” and
“deep” datasets were not clear, because the latter
represented specimens largely from<1000m deep
and they only numbered <8 over the designated
three latitudinal ranges. The deepest sampling for
the study of chemical composition of pelagic
copepods ever made is that (1300-2500m in the
eastern North Pacific) of Lee et al. (1971), but their
analysis was limited to lipid composition only.

Regarding depth-related patterns of body chemi-
cal composition of marine pelagic animals generally,
Childress and Nygaard (1973) demonstrated a rapid
increase in water and decrease in protein and energy
contents with increasing depth of occurrence for
micronektonic fishes. Further, Childress and Ny-
gaard (1974) noted that while water contents did not
increase, protein contents of micronektonic crusta-
ceans (decapods, mysids, euphausiids, etc.) decrease

with increasing depth of occurrence. Morris and
Hopkins (1983) investigated biochemical composi-
tion of pelagic crustaceans (mostly copepods and
euphausiids) caught at various depths between the
surface and 1000m and noted a depth-related
pattern in water and protein contents similar to
those of micronektonic fishes. The decrease in
protein concentration in the body with increasing
depth is considered to be in line with the “visual
interactions” hypothesis proposed for a rapid
decline in metabolic activity of pelagic visual
predators such as micronektonic fishes, crustaceans
and cephalopods (cf. Childress, 1995).

In this study, we determined the prosome length
(PL), dry weight (DW), condition factor index
(CFI), water, carbon, nitrogen, ash and energy
contents on various copepods retrieved from
mesopelagic  (500-1000m), upper-bathypelagic
(10002000 m), lower-bathypelagic (2000—-3000m)
and abyssopelagic (3000-5000m) zones in the
western subarctic Pacific. The objectives of this
study were to (1) establish the depth-related patterns
of these body measures and chemical composition/
energy units of copepods in cold-thermal regimes,
(2) explore major biological attributes (feeding
habits, reaction speeds, body sizes, etc.) to the
interspecific variations in chemical composition/
energy units of deep-sea copepods and (3) determine
whether or not the observed depth-related patterns
of chemical composition/energy units fit the visual
interactions hypothesis.

2. Materials and methods
2.1. Copepods

Specimens were collected at stations in the
western subarctic Pacific, including Site H
(41°30'N 145°50'E) and Station Knot (44°00'N
155°00'E), during T.S. Oshoro— Maru Cruises 124A
(June) in 2002; 133D (March), 136A (June) and
142A (December) in 2003; 143B (February) and
144A (March) in 2004; and 155 (March) in 2005,
and during R.S. Tansei-Maru cruise KT-04-18
(August) in 2004 (Fig. 1). A vertical closing net
(mouth diameter 80cm, mesh aperture 0.3 mm;
modified from Kawamura 1968) equipped with a
large cod-end (1-21 capacity) was used to collect
zooplankton from the mesopelagic, upper-bath-
ypelagic, lower-bathypelagic and abyssopelagic
zones. The closing net was towed from the bottom
through the top of a designated depth stratum at a
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Fig. 1. Location of sampling stations (solid circles; Site H, KNOT and others) in the western North Pacific Ocean. Depth contours

(1000-6000 m) are superimposed.

speed of 1 ms™', closed and retrieved to the surface

at 2ms~'. The depth the net reached was read from
the record of an RMD depth meter (Rigosha Co.
Ltd.) attached to the suspender cable of the net.
During this study, a closing cod-end was developed
(Ikeda, unpublished) to maintain near in situ
temperature of the zooplankton samples during
net retrieval, and it was used when the water
temperature at the surface layer exceeded 10°C.
Upon retrieval of the net, undamaged specimens of
copepods were sorted immediately. Most of the
copepods (excluding those from the abyssopelagic
zone) used in the present study were those on which
respiration rates were determined (Ikeda et al.,
2006). Temperature and salinity profiles were
determined with a CTD system.

2.2. Analytical procedures

On board the ship, individual specimens were
rinsed briefly with a small amount of chilled distilled
water, blotted on filter paper and frozen at —60 °C.
In a land laboratory, frozen specimens were
weighed quickly on a microbalance (WW), freeze-
dried then oven-dried at 60° C for 0.5-1h to obtain
dry weight (DW). Specimens were observed under a
dissecting microscope for species, developmental
stage and sex identification. At the same time, the
prosome length (PL) was read to the nearest
0.05mm with an eyepiece micrometer. For 26

freshly collected copepods, the effect of freeze-
drying on the prosome length was examined by
repeating measurement before (PLyerore) and after
(PL,fer) freeze-drying. Since the differences between
the two measurements were very small (PL,ge./
PLpetore = 0.9740.02), no correction for the effect
was made in this study. From each cruise, specimens
of the same species, depth, stage and sex were
pooled for C and N composition analysis with a
CHN elemental analyzer (Elementar vario EL)
using acetanilide, antipyrine or phenacetin as a
standard. Weighed fractions of specimens were
incinerated at 480 C for 5h and reweighed for ash
(ASH) determination. A specimen or a batch of
specimens weighing <1.5mg DW was used for
single or duplicate measurement of C and N
composition, and replicate ash measurements were
made only for the samples weighing >1.5mg DW.
Precision (CV) of these measurements was 3% for
C, 7% for N and 10% for ash.

CFI of copepods was defined as CFI = 1000 x
DW/(PL)*(cf. Mauchline, 1998). Water content
(WATER) was computed as: WATER = 100
(WW—-DW)/WW, and thus as a percentage of
WW. Ash-free dry weight (AFDW) was computed
as: AFDW = DW—ASH. The energy content was
calculated by using the formula of Gnaiger (1983),
amended by Gnaiger and Shick (1985):
J =606265W_+4.436W,—11.2, where J is an energy
content in Jmg 'AFDW, and W, and W, are
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fractions of C and N, respectively, on an AFDW
basis. J was expressed also as Jmg ' DW
(= Jmg 'AFDW x AFDW/DW).

2.3. Data analysis

Individual data representing one or a batch of a
few specimens from various seasons of the year were
grouped into four sampling zones (mesopelagic,
upper-bathypelagic, lower-bathypelagic and abys-
sopelagic), four developmental stage/sex categories
(C4, C5 and C6 females and males), three feeding
types as judged by morphology (carnivore, detriti-
vore and suspension feeder, cf. Yamaguchi et al.,
2002), or two reaction speed groups (fast and slow
reacting species) based on presence/absence of
myelinated sheath enveloping axons (Lenz et al.,
2000). All species belonging to the superfamilies
Arietelloidea and Centropagoidea were assumed to
lack myelinated sheath enveloping the axons ac-
cording to the study of Lenz et al. (2000). The depth
of occurrence of the four zone copepods was
represented by the mid-point of the sampling
interval, i.e. 750m for the mesopelagic zone
(500-1000m), 1500m for the upper-bathypelagic
zone (1000-2000m), 2500m for the lower-bath-
ypelagic zone (2000-3000m) and 4000 m for the
abyssopelagic zone (3000—-5000 m).

3. Results

3.1. Mesopelagic through abyssopelagic
environments

With the increase in depth from 500 to 5000 m in
the western subarctic Pacific, water temperatures
decrease from 3 to 1.5°C, and salinities increase from
340 to 34.7. These features are almost constant
throughout the year (Fig. 2). The 10002000 m depth
is characterized by low oxygen [1.0-2.0ml O,17", or
10-30% saturation, Favorite et al. (1976)].

3.2. Copepods

Calanoid copepod species belonging to the five
Superfamilies and 11 Families were used for the
present analyses (Table 1). Species belonging to the
Families Eucalanidae (Eucalanus bungii) and Calani-
dae (Neocalanus cristatus and N. plumchrus) are
known to undergo an extensive ontogenetic vertical
migration (Vinogradov and Tseitlin, 1983), and those
occurring in the mesopelagic through abyssopelagic

Temperature ("C) Salinity
1 2 3 4 533 335 34 345 135

-
~a,

5000

Fig. 2. Temperature and salinity profiles at Site H (40°30'N
145°50'E), one of the major sampling sites of this study. Note that
both temperature and salinity below 500m are nearly stable
throughout the year.

zones were in diapause phase (characterized by a
large accumulation of lipids, cf. Ikeda et al., 2004)
and were not used in the present study. The number
of datasets (DW, C and N data) was 54 for 36
mesopelagic zone species, 57 for 33 upper-bath-
ypelagic zone species, 49 for 28 lower-bathypelagic
zone species and 30 for 25 abyssopelagic zone species
(Table 2). Of a total of 69 species which ranged from
2.5 (Metridia asymmetrica) to 10.8 mm (Bathycalanus
bradyi) in PL, or from 0.30 (Scaphocalanus subelon-
gatus) to 27.3mg (B. bradyi) DW, many species
occurred from two or three neighboring bathymetric
zones, and two (Lucicutia gracilis and Pseudochirella
spinifera) occurred in all bathymetric zones.

3.3. WATER

Water contents varied little among the four
bathymetric zone groups (75.0-78.6% of WW,
Table 3) and the developmental stage/sex categories
(74.3-77.7% of WW)(one-way ANOVA, p>0.05,
Table 3). Among the three feeding types, suspension
feeders contained more water (78.1% of WW) than
carnivores and detritivores did (74.5-74.6% of
WW)(one-way ANOVA and followed Bonferroni-
test, p<0.05). We found a significant difference
between copepods with (74.8% of WW) and with-
out (83.0% of WW) a myelin sheath enveloping
their axons (one-way ANOVA, p<0.001).

3.4. CFI

Similarly to WATER, no significant differences in
CFI were seen among the four bathymetric zone
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A list of copepod superfamily, family and genus used in the

present study

Superfamily

Family

Genus

Arietelloidea

Centropagoidea

Clausoclanoidea

Euchalanidae

Megacalanoidea

Spinocalanoidea

Augaptilidae
Heterorhabdidae

Lucicuttidae
Metridinidae

Candaciidae

Aectideidae

Euchaetidae
Phaennidae

Scolecitrichidae

Eucalanudae

Calanidae

Megacalanidae

Spinocalanidae

Euaugaptilus
Pachyptilus
Heterosytlites
Lucicatia
Metridia
Pleuromamma

Candacia

Aetideopsis
Bradyidiys
Batheuchaeta
Chiridiella
Chiridius
Euchirella
Gaetunus
Pseudochirella
Undeuchaeta
Valdiviella
Paraeuchaeta
Cornucalanus
Onchocalanus
Xanthocalanus
Amallothrix
Lophothrix
Mixtocalanus
Scophocalanus
Scolecithricella
Scottocalnaus

Rhincalanus®

Calanoides®
Calanus®
Megacalanus
Bathycalanus

Spinocalanus

#Arctic/Antarctic copepods, see text for details.

groups (21.5-25.0) or the four developmental stage/
sex groups (22.7-26.5) (one-way ANOVA, p>0.06,
Table 3). CFI values changed significantly among
the three feeding types (one-way ANOVA,
p =0.001), and a significant difference was seen
between carnivores (27.1) and suspension feeders
(22.2)(Bonferroni-test, p<0.05). Copepods with
myelinated axons exhibited greater CFI (25.4) than
those without myelinated sheath (18.6) (one-way
ANOVA, p<0.001).

3.5 Cand N

While C composition of the four bathymetric
zone groups (51.3-53.7% of DW), and C and N

composition (51.5-55.1% of DW and 7.9-8.9% of
DW, respectively) among the four developmental
stage/sex groups did not vary significantly (one-way
ANOVA, p>0.06, Table 3), N content showed one
significant difference between bathymetric groups
(one-way ANOVA, p<0.02), and subsequent test
showed the mesopelagic zone>the abyssopelagic
zone (Bonferroni-test, p<0.05). With regard to
feeding types, suspension feeders were characterized
by lower C (50.2% of DW) composition but higher
N (8.6% of DW) composition, as compared with
those of the other two feeding types (54.3-56.0%
and 7.6-8.4% of DW, respectively) (one-way
ANOVA, p<0.001). Copepods without myelinated
axons contained less C (49.1% of DW) and N (7.8%
of DW) as compared with those with myelinated
axons (53.3% and 8.4% of DW, respectively) (one-
way ANOVA, p<0.025).

3.6. C/N

Because of differential patterns of C and N
composition within each designated group or type,
variation in resultant C/N ratios is expected to be
dissimilar from that of C or N composition
mentioned above. No significant between-group
differences were shown among the four bathymetric
zone groups (6.2-7.0), among the four development/
sex groups (6.4-7.3), or between those with and
without myelinated axons (6.3—7.3)(one-way ANO-
VA, p>0.06, Table 3). C/N ratios were significantly
different among the three feeding types (one-way
ANOVA, p<0.001), and subsequent tests showed
that the ratio of carnivores (7.5) was significantly
greater than that (6.2) of suspension feeders
(Bonferroni-test, p<0.05).

3.7. ASH

Because of limited sample size and its preferential
use for C and N composition, the number of data
sets of ASH was much less than those of WATER,
C or N. Despite fewer datasets, ASH differed
significantly among the four bathymetric zone
groups (one-way ANOVA, p<0.01, Table 3), and
the upper-bathypelagic zone (9.6% of DW) was
significantly greater than that (6.9% of DW) of the
abyssopelagic zone (Bonferroni-test, p<0.05). No
significant differences were seen among the four
developmental stage/sex groups (7.5-9.0% of DW)
or copepods with and without myelinated axons
(8.2-10.3% of DW)(one-way ANOVA, p>0.05).
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ASH varied significantly among the three feeding
types (one-way ANOVA, p<0.01), and ASH of
suspension feeders (9.4) was significantly greater than
that (7.2) of carnivores (Bonferroni-test, p <0.05).

3.8. Energy

No significant differences were seen among the four
bathymetric zone groups (27.1-29.5J AFDW ™~ ")(one-
way ANOVA, p>0.50, Table 3). On the other hand,
there were significant differences among the three
developmental stage/sex groups, among the three
feeding types and the groups with and without
myeliated axons (one-way ANOVA, p<0.02). Within
each designated group or type, significant differences
were detected between C5 (30.0) and C6 female
(27.2), between carnivores (30.5) and suspension
feeders (26.2), and between copepods with (28.4)
and without (25.1) myelinated sheath (Bonferroni-
test, p<<0.05). These results remained unchanged if
the energy unit was changed from JAFDW™' to
JDW™! (Table 3).

3.9. Relative importance of various parameters

Designating the depth of occurrence, stage/sex,
feeding type, presence/absence of myelinated
sheath, PL and DW as independent variables, the
attributes of these variables to each dependent
variable (Y: CFI, WATER, C, N, ASH, C/N, J/
AFDW or J/DW) of copepods from the mesopela-
gic through abyssopelagic zones (Table 2) were
analyzed by stepwise multiple regression (Sokal and
Rohlf, 1995). The full model of the multiple
regression adopted was

Y =UB+ LB+ AB+ C5+ C6F + C6M + DETR
+ SUS + MYEL + PL + DW + constant,

where UB, LB and AB are dummy variables on
depth; C5, C6F, C6M are on stage; DETR and SUS
are on feeding type. Details of the definitions of
these dummy variables are summarized in the
Appendix. The dummy variable MYEL was defined
as 1 when a myelinated sheath was present, and 0
when it was absent. The independent variable PL
and DW were the value of PL in mm and DW in
mg. Predictor variables were added if p<0.05 and
removed if p>0.10. The calculation was conducted
using SPSS version 11.5.

The stepwise regression analyses distinguished
significant independent variables, which varied from

one dependent variable to the next (Table 4).
Among 11 independent variables tested, the feeding
type (SUS or not) was the most important one,
affecting all dependent variables (CFI, chemical
composition and energy contents). As one of the
other independent variables, the presence of myeli-
nated sheath (MYEL) influenced CFI, WATER and
N. Of depth zones, LB was not a significant
variable, but UB was associated positively with
ASH, and AB negatively with N (then positively
with C/N). As stage/sex, all C5, C6F and C6M
contributed negatively the chemical composition
and energy contents. Overall, the regression analysis
yielded results similar to those of one-way ANOVA
(Table 3) in which the chemical composition and
energy content data were grouped based on single
criteria (depth, stage/sex, feeding type or myelinated
sheath) and where other criteria were regarded as
random variables. It is noted that PL and DW were
newly designated independent variables for the
regression analysis. PL affected negatively CFI, C
and C/N but DW affected positively these variables
plus energy content units, the latter indicating
greater accumulation of C or energy rich material
( = lipids) in copepods with greater DW (Table 4).

4. Discussion
4.1. Comparison with previous data

Since the data of C and N composition and
energy contents of copepods living down to 5000 m
depth were first obtained in this study, it is of great
interest to compare the present results with those of
previous studies on copepods reviewed by Bamstedt
(1986). Bamstedt (1986) split the entire dataset into
three latitudinal groups (high, medium and low),
and each latitudinal group was divided further into
two bathymetric levels (“surface” and “deep”), thus
yielding six subgroups. His “deep” data are from
copepods living at<1000m depth, and the sample
size for that group was very small (<8 for C and N).
Comparison of the present data for deep-sea
copepods (the data of mesopelagic, upper-bath-
ypelagic, lower-bathypelagic and abyssopelagic
zone copepods pooled) with those (the six sub-
groups pooled) of Bamstedt showed partial overlap
of the water content ranges [75.0-78.6% (this study)
vs. 78.3-91.5% of WW (Bamstedt) ], characterized
by extension to lower values in our data, and ash
ranges [25.3-27.4 (this study) vs. 15.8-27.1Jmg~!
DW (Bamstedt)] characterized by the wider spread
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Table 4

Attributes of the depth (UB, LB or AB), stage/sex (C5, C6F or C6M), feeding type (DETR or SUS), presence/absence of Myelinated
axons (MYEL), prosome length (PL) and dry weight (DW) to CFI, chemical composition (WATER, C, N, ASH or C/N) or energy
content (JJAFDW or J/DW) of mesopelagic through abyssopelagic copepods

Independent variable UB LB AB C5 Co6F CoM DETR SuUS MYEL PL DW
CFI - — S 4+ — 4+
Water —— + + o

C - - + —
N - —— ++ + ++ + -

Ash ++ + NI

C/N + - — _ 4
JJAFDW - . ¥ T4
J/DW - _— + + 4+

++ 4+, + + or + indicates the coefficients are all positive and significant at p<0.001, p<0.0land p <0.05, respectively.
———, —— or — indicates the coefficients are all negative and significant at p<0.001, p<0.0land p<0.05, respectively.

of Bamstedt’s data. The present data for C
(51.3-53.7% of DW), N (7.7-8.8% of DW) and
ASH (6.9-9.6% of DW) of deep-sea copepods fell
well within the ranges (C and N) or showed partial
overlap of the range (ASH) (37.2-54.7%,
6.4-12.6% and 8.5-16.9%, respectively, of DW) of
Bamstedt’s data. Energy contents of deep-sea
copepods (25.3-27.4Jmg~' DW) were close to the
upper range of Bamstedt’s data (15.8—
27.1 Jmg~' DW). Overall implications gained from
this broad comparison with previously reported
data are that: (1) the mesopelagic through abysso-
pelagic zone copepods from the western subarctic
Pacific of this study are not especially unique as
compared with previous data for the epipelagic/
mesopelagic zone copepods from high to low
latitude seas compiled by Bamstedt; (2) compared
with the data compiled by Bamstedt, lesser varia-
tions of each component in the present data may
reflect the narrower ranges of variations in environ-
mental factors (temperature, food abundance, etc.)
affecting the body composition of copepods,
directly or indirectly, in the deep sea.

While comparable data are not available in
Bamstedt (1986), the present analysis shows that
water, C, N and ash contents did not vary
significantly among C4, C5, C6F and C6M
(Table 3). It must borne in mind that all the data
in Table 2 of this study represent single specimens or
a batch of a few specimens of each stage or stage/sex
combination of a given species; therefore statisti-
cally meaningful tests are limited to interspecific
differences only. Our results showed no significant
effects of sex on the C and N composition of C6
specimens (Table 3). Intraspecifically, the effect of

sex on the C and N composition of copepods has
been documented as variable: some species exhibit
higher C and lower N in males than females, but the
reverse pattern or no sexual difference has also been
reported on copepods living in coastal regions (Uye,
1982; Lee et al., 2001).

Our stepwise regression analysis revealed positive
and negative effects of body size (PL and DW) on
C, N, C/N and/or energy contents but negative
effects on N of deep-sea copepods (Table 3).
Because of narrow ranges of these size measures
(PL: 2.5-10.8 mm, DW: 0.3-27.3 mg, cf. Table 2) the
generalization of the results needs caution. Pre-
viously, no DW effects have been recognized on C
and N composition in the broad analyses of marine
zooplankton including copepods (DW range:
0.005-100 mg, Ikeda 1974).

Previously, the CFI was computed as 8—13 (re-
calculated with the equation of this study) for
Acartia clausi by Durbin and Durbin (1978) as a
possible index sensitive to change in food and other
environmental conditions for this small neritic
copepod. Durbin et al. (1983) demonstrated experi-
mentally that the CFI of A4. tonsa increased with
increasing phytoplankton concentrations and
reached a saturated CFI value (18). While the
between-species variations in CFI values were large,
CFIs computed for mesopelagic, upper-bathypela-
gic, lower-bathypelagic and abyssopelagic zone
copepods (21.5-25.0, cf. Table 3) of this study are
higher than those (8-18) of Acartia spp. Since the
body shape of copepods varies species-specifically,
between-species differences in CFI values cannot be
used as an indication of relative nutritional condi-
tions experienced by the species. If one assumes a
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typical copepod Calanus finmarchicus of which
prosome is ellipsoid in shape [PL =2 x long axis
(a mm); prosome width = 0.3 x PL] and with a
water content of 75% of WW (cf. Table 3), the CFI
can be computed as 11.8 from the equation used in
the present study [4ma’ x 1000 x 0.3% x 0.25/
(3 x (2a)*)]. Judging from the CFI value, the
prosome shape of Acartia spp. is close to that of
this hypothetical C. finmarchicus but that of the
deep-sea copepods of this study is more solid than
C. finmarchicus. The lack of significant differences
among the zone-structured data of this study
(Table 3) indicates that the prosome shapes of
copepods living in the mesopelagic through abysso-
pelagic zones are more or less similar. Besides the
prosome shape, CFI may be used as an index of
feeding type or phylogenetic position of the species
(cf. Table 4).

4.2. Copepods vs. net plankton

While the previous data mentioned above are
limited to depths above 1000 m, chemical composi-
tion data from net-plankton samples collected with
a 90 pm mesh net from epipelagic through abysso-
pelagic zones in the western subarctic Pacific (the
present study site) were reported recently by
Yamaguchi et al. (2005). Compared with the present
results (Fig. 2), marked differences are seen in the
net-plankton data from the epipelagic and abysso-
pelagic zones. Net-plankton in the epipelagic and
abyssopelagic zones characterized by high water
(91-92% of WW) and ash (27-44% of DW)
contents, yet markedly low C (25-35% of DW), N
(4-8% of DW) and energy (12-16Jmg~' DW)
contents, suggest that an appreciable fraction of net-
plankton is detritus (and phytoplankton in the
epipelagic zone samples). The proportion of detritus
in the total net-plankton biomass increased with
depth and often exceeded zooplankton biomass
below 1000 m depth in the western subarctic Pacific
(Yamaguchi et al., 2005). According to Rudyakov
and Tseitlin (1992), seston (detritus+ plankton):
plankton mass ratios determined with a 178 pm
mesh net change slightly with depth, but vary more
strongly among regions: 2.4 in the Peru upwelling
region (the fraction of detritus in total sample is
58%), 1.9 in the Indian Ocean (47%) and 1.4 in the
Bering Sea (29%). In the mesopelagic, upper-bath-
ypelagic and lower-bathypelagic zones, differences
in chemical composition between copepods and net-
plankton were not appreciable. Yamaguchi et al.

(2004) noted that copepods were the major compo-
nent (40-87%) of zooplankton biomass in these
depth strata, and Neocalanus spp. in diapause often
dominated (0-67%) in copepod biomass. Neocala-
nus spp. in diapause contain even more C and
energy (as great as 64% of DW and 32Jmg~' DW,
cf. Ikeda et al., 2004) than those of the mesopelagic,
upper-bathypelagic, lower-bathypelagic and abys-
sopelagic copepods of this study (51-53% of DW
and 25-27Jmg~' DW, cf. Table 2). In the compar-
ison of the data shown in Fig. 2, Neocalanus spp.
were excluded from mesopelagic through abyssope-
lagic zone copepod data of this study, but were
included in net-plankton data of Yamaguchi et al.
(2005). Therefore, apparent agreements seen in the
mesopelagic and upper-bathypelagic zone (ca. 500
and 1500 m) data between these two studies may be
that the negative effect of detritus and gelatinous
zooplankton containing less organic matter (by high
water and high ash contents) was offset by the
positive effect of organic-rich Neocalanus (low water
and low ash contents).

Nevertheless, we present the first evidence for
differences between net-plankton samples and
copepods (hypothesized major component of net-
plankton) in chemical composition and energy
content, which was highlighted typically in the data
of water, C, N, ash and energy contents at the
abyssopelagic zone (Fig. 2).

4.3. Feeding types and reaction speed types

Our stepwise regression analyses revealed that of
11 independent variables tested, the one affecting
broadly the chemical composition and energy
contents of deep-sea copepods was a feeding type
(suspension feeder) (Table 4). Since the effects of
detritivore to these variables are neutral, the effects
of non-suspension feeder (e.g. carnivore) would be
the reverse to those of suspension-feeder. For
shallow-living zooplankton in higher latitude seas,
herbivores ( = suspension feeders) are known to
accumulate a large amount of lipid in the body as an
energy reserve to cope with the phytoplankton-
depleted winter season. In contrast, such accumula-
tion of lipid is not usually the case for carnivores,
because they take animal food (including herbi-
vores), which is a more stable food resource than
phytoplankton (Ikeda, 1974; Bamstedt, 1986). C
contents as high as >45% of DW are an indication
of accumulation of lipids in the body of marine
zooplankton (Ikeda, 1974). From this view, all
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deep-sea copepods grouped into the three feeding
types of this study (50-56% C of DW, Table 3)
contain large amounts of lipids. In the present
analysis of deep-sea copepods, carnivores showed
higher C and lower ash contents (Table 3) and
therefore contain larger energy reserves than detri-
tivores and suspension feeders do. If one assumes a
continuous food supply for carnivores as in shallow-
water environments, the possession of energy
reserves in carnivorous copepods of this study do
not make sense. As a plausible explanation, food
supply for carnivores is discontinuous in the deep-
sea. Lee et al. (1971) found a large accumulation of
wax esters in mesopelagic and bathypelagic cope-
pods (without separating into feeding types), and
considered their role as an energy reserve in these
food-limited deep environments. Considering that
prey zooplankton biomass decreases rapidly toward
greater depths (Vinogradov and Tseitlin, 1983;
Yamaguchi et al., 2005), carnivorous feeding
appears to be not a feeding trait well adapted to
deep-sea regimes relative to detritivorous or suspen-
sion feeding. In analyzing the trophic structure of
zooplankton communities (copepods plus non-
copepods) to great depths in the western subarctic
Pacific, Vinogradov and Tseitlin (1983) noted that
the proportion of carnivores increases from the
surface to around 2000 m, then decreases rapidly
toward 6000m. In the present analysis, the mean
depth of occurrence of carnivores (1605m) was
shown to be significantly less than that (2089 m) of
suspension feeders (Table 3).

The presence of myelinated sheath (MYEL) was
found to be another parameter affecting moderately
some chemical composition units and energy con-
tents of deep-sea copepods (Table 4). The presence
of myelinated sheath enveloping axons implies fast
escape reactions against the stimuli of predators
(Lenz et al., 2000), and its positive effects on C and
N composition and energy contents but negative
effect on water contents altogether suggest rich
musculature and organic matter in the body to
support active swimming. Of a total of 190 datasets
in Table 2, those with myelinated sheath were 148
(78%). If one assumes binomial distribution, the
probability of 50 carnivores, which were sampled at
random from the 190 copepods, to have as high as
41 incidences (or 82%) of specimens with myeli-
nated sheath is 0.11 or quite low [f(41) = 50C4,(148/
190)*'((190—148)/190)>°~*! = 0.112, cf. Sokal and
Rohlf, 1995]. Perhaps, carnivorous copepods in the
deep sea do not necessarily need to react quickly, as

specialized feeding mechanisms such as venom or
anesthetic injection, mucus jets, etc. have been
known on some carnivorous copepods in the deep
sea to capture prey animals (cf. Nishida and
Ohtsuka 1996). Compared with fast-reacting species
(myelin sheath present), special features of slow-
reacting species are less CFI, C, N and energy
contents but higher water levels. However, these
features of deep-sea copepods with/without myeli-
nated sheath cannot be generalized to shallow-living
copepods; i.e., among dominant copepods occurring
in the surface water of high-latitude seas those with
(Calanus spp., Neocalanus spp.) and without (Me-
tridia longa, M. pacificus) myelinated sheath do not
show appreciable differences in water content or C
and N compositions (Ikeda and Skjoldal, 1989;
Ikeda and Hirakawa, 1998).

4.4. Depth-related pattern

In order to avoid an obvious effect of thermal
regimes on the chemical composition and energy
contents (Bamstedt, 1986), the data for the epipe-
lagic copepods living at near-zero or at subzero
temperatures, such as Calanus propinquus, Cala-
noides acutus, Rhincalanus gigas and Metridia
gerlachei in Antarctic waters (Ikeda and Mitchell,
1982; Ikeda unpublished data), and Calanus fin-
marchicus, C. glacialis, C. hyperboreus and M. longa
in Arctic waters (Ikeda and Skjoldal, 1989) were
combined with mesopelagic through abyssopelagic
data of this study to evaluate depth-related patterns,
if any (Table 3, Fig. 2). Not all available Arctic data
(Ikeda and Skjoldal, 1989) and no R. gigas data
(Ikeda, unpublished) from the Antarctic are in-
cluded in the review by Bamstedt (1986). The
combined data of this study show no significant
depth-related pattern in water level, C, ash or
energy contents. At the same time, the significant
pattern of decline with increasing depth becomes
more marked in N content, and a reversed pattern
(increase with depth) emerged newly in the C/N
ratios (Fig. 2). Since the C composition did not
show significant depth-related patterns, the pattern
newly emerged in the C/N ratios was caused by the
reduced N content of deeper-living copepods.

An increase in water content and a decrease in N
content (per WW) with increasing depth of occur-
rence (ca. 1000m at most) has been observed for
micronektonic fishes off southern California (Child-
ress and Nygaard, 1973) and crustaceans (copepods
and euphausiids) in the eastern Gulf of Mexico
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(Morris and Hopkins, 1983). On the other hand,
only a decline in N content (per WW) was observed
for large crustaceans (mysids, decapods, etc.) off
southern California (Childress and Nygaard, 1974).
Our re-calculation indicates that the depth-related
decline in N content, expressed as % of WW by
Childress and Nygaard (1973, 1974), disappears

when expressed as % of DW, but the pattern
remains in the results of Morris and Hopkins
(1983). The present results for pelagic copepods
(Fig. 2) are in agreement with Childress and
Nygaard’s (1974) for water content, and with
Morris and Hopkins’s for N content. Unlike cope-
pods, fishes have well-developed visual perception

Water (o WW) C (%DW) N (%DW)
60 70 50 90 10020 30 40 SO 60 70 2 4 6 & 10 12
0 A= SERS oo
—a—'! e~
—_ 1000 - —aA— = —a—
E
: F—®+X— 3.3 b=l
=]
g 2000 .
§ —e— o
= 3000 =
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& 40001 —e— X +xH —e—
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0 T To—a—x— I
kol g e L S
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g —o— o1 —e—
] 3000 - -
5
(="
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Fig. 3. Changes with the depth of occurrence in (top) water content, carbon (C), nitrogen (N), (bottom) C:N ratio, ash and energy of
pelagic copepods in the western subarctic Pacific (including epipelagic data of Arctic/Antarctic copepods). The depth represents mid-range
of the epipelagic (50 m for 0-100m), mesopelagic (750 for 500-1000 m), upper-bathypelagic (1500 for 1000-2000m), lower-bathypelagic
(2500 for 2000-3000 m) and abyssopelagic (4000 for 3000-5000 m) zones. For statistically significant cases, a best-fit regression line was
superimposed: N = 9.06—0.00038 x Depth (r = 0.964), and C/N = 0.635log;oDepth +4.60 (r = 0.967). The figure includes the “‘surface”
(designated as 75m) and “deep” (1000 m) copepod data from “high” latitude seas by Bamstedt (1986), and net-plankton data at 100, 600,
1500 and 4000 m by Yamaguchi et al. (2005). Symbols and horizontal bars denote means and 1 SD.
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systems and are strict predators among the species
studied by Childress and Nygaard (1973). The
increased water content in deeper-living micronek-
tonic fishes may be interpreted by a ‘‘visual
interactions” hypothesis (Childress, 1995), i.c., the
progressive decline in visual perception range as
darkness increases at depth is accompanied by
reduction in their locomotive activity/body muscu-
lature (implied by increasing water content). Dis-
similar results for water content, and similar results
for N content between pelagic crustaceans found by
Morris and Hopkins (1983) and in the copepods by
us are difficult to interpret, because copepods are a
taxon included in both studies. As a possible
explanation, inclusion of deep eucalanidae (Eucala-
nus spp.), characterized by high water contents (as
high as 92% of WW), in Morris and Hopkins’s
study may be considered. Eucalanid copepods,
characterized by high water content but low N
content, occurred frequently in the present samples
from the mesopelagic zone (e.g. E. bungi containing
water 91% of WW and N 7.4% of DW, Ikeda
unpublished data), but they were not included in the
present analyses because of their unusual physiolo-
gical states (e.g., diapause) (see Section 2) (Fig. 3).
Among various chemical components of pelagic
copepods examined, why does only N content
decline with increasing depth? As mentioned above,
the decline in N content means a reduction in their
locomotive activity/body musculature for visual
predators such as micronektonic fishes. From the
“visual interactions” hypothesis, no depth-related
changes in chemical composition may be predicted
for copepods, since they do not have visual
perception systems, at least none useful in predation
or escape from predators. Recently, the rapid
decline in respiration rates with increasing depth
of occurrence, which has been reported on pelagic
visual predators only, was observed on pelagic
copepods (non-visual predators) by Ikeda et al.
(2006). They interpreted this as a consequence of
lowered selective pressure for activity in deep-sea
copepods, reflecting progressive reduction in preda-
tion pressure downward (“‘predation-mediated se-
lection” hypothesis in contrast to ‘‘visual
interactions” hypothesis). The decline in N content
observed in this study is consistent with the
predation-mediated selection hypothesis. In the
light of high diversity of non-visual pelagic animals
in the ocean, further study on animals other than
copepods is needed to prove/disprove this new
“predation-mediated selection” hypothesis.
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Appendix. Definitions of dummy variables

The depth was categorized into mesopelagic,
upper-bathypelagic, lower-bathypelagic and abys-
sopelagic, and the independent variables UB, LB,
AB were defined as dummy variables as in
Table Al. The stage/sex was categorized into
Category 4, Category 5, Category 6 Female and
Category 6 Male, and dummy variables C5, C6F,
C6M were defined as in Table A2. Feeding type was
categorized as carnivore, detritivore, and suspen-
sion-feeder, and dummy defined as in Table A3.

Table Al
Definition of dummy variables on depth

Depth category UB LB AB
Mesopelagic 0 0 0
Upper-bathypelagic 1 0 0
Lower-bathypelagic 0 1 0
Abyssopelagic 0 0 1
Table A2

Definition of dummy variables on stage/sex

Stage/sex category C5 Co6F CoM
Category 4 0 0 0
Category 5 1 0 0
Category 6: Female 0 1 0
Category 6: Male 0 0 1

Table A3

Definition of dummy variables on feeding type

Feeding type DETR SuUS
Carnivore 0 0
Detritivore 1 0
Suspension feeder 0 1
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The dummy variable MYELI was defined as 1 if
myelinated sheath was present variables DETR, and
SUS were and otherwise MYEL was defined as 0.
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