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ARTICLE INFO ABSTRACT

Keywords: The Arctic marine ecosystems, extending from microbial communities to the system response to environmental
Arctic and human pressures, were investigated in the Arctic Challenge for Sustainability II (ArCS II) project, a nationally
Plankton coordinated Arctic project in Japan. New findings and hypotheses emerged: a) bottom sediments on a continental
Settling particles . L : . . . .

DNA shelf contained a significant amount of the bloom-causing viable diatom, and more primary production may be
el . . . . . . .
Ecosystem occurring over a water column than previously thought, b) particle flux containing biogenic opal increased over

the 2010s, c) large copepod Calanus glacialis/marshallae exhibited flexibility on grazing in the Pacific Arctic
Ocean, suggesting their high adaptation to environmental changes, d) a novel environmental DNA (eDNA)
technique succeeded in the identification of polar cod distribution, e) there was an increase in species richness
over the last 20 years due to the poleward shift of habitat ranges of marine predatory species, f) Arctic marine
ecosystems may have a larger sensitivity to external forcings around the Pacific and Atlantic gateways. This
article reviews and highlights these findings in the context of specific science questions and delivers Japan’s
contribution to the integrated assessment of Arctic marine ecosystems.

1. Introduction frameworks for the visualization (e.g. ICES, 2021; 2023, CAFF, 2021;

PAME,2008, 2013) and earlier and recent studies in the Arctic have

A significant reduction of Arctic sea ice during recent years
(Druckenmiller et al., 2020; Meier et al., 2023) is a symbolic symptom of
our planet in response to anthropogenically driven global climate
change. The retreat of the sea ice is now allowing a direct and unprec-
edented expansion of human activities into the Arctic with modern in-
dustrial machinery such as fishing, shipping, cruising, etc. (Stocker
et al., 2020; Dawson et al., 2020). Despite such visible changes in the
natural environment and the extent of human intervention in the Arctic,
their impacts on marine ecosystems are not necessarily visible and
poorly recognized. International efforts have been developed in various

This article is part of a special issue entitled: ArCS II published in Polar Science.

shown the differences in physical and biological structures among eco-
systems (Kang et al., 2024; Rudels and Carmack, 2022; Drinkwater et al.,
2021; Mueter et al., 2021a), stressing the need to understand regional
ecological impacts. Some studies showed evidence of these impacts, for
example, on species abundance (CAFF, 2013), recruitment (David et al.,
2025), and biogeographic shifts of organisms (Kim et al., 2024; Orlov
and Volvenko, 2024; Baker et al., 2023; Gordé-Vilaseca et al., 2023;
Jorgensen et al., 2022; Stafford et al., 2022; Frainer et al., 2021) as well
as future change in marine communities and biodiversity (e.g. Stroeve
et al., 2025; Hodapp et al., 2023; Mueter et al., 2021a; Alabia et al.,
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2020). While Arctic research efforts are gaining momentum, climate
change research remains comparably sparse in this region relative to
other marine biomes, impeding conservation efforts (Deb and Bailey,
2023). Impact assessment of Arctic ecosystems due to the combined
effects of natural and anthropogenic stressors is an urgent international
task towards achieving sustainable ecosystem management against un-
regulated and overused environmental resources and ecosystem services
in the Arctic.

Two nationally-organized projects for Arctic research, such as the
Green Network of Excellence (GRENE) Arctic Climate Change Research
project (2011-2016) (Yamanouchi and Takata, 2020) and the Arctic
Challenge for Sustainability (ArCS) project (2015-2020) (Sueyoshi
et al., 2021), were launched in Japan. Marine ecosystem studies have
been conducted as one of Japan’s contributions to the international ef-
forts to understand the Arctic marine ecosystems. One of the significant
ecological findings was the northward transport and shift of marine
species across multiple trophic levels over the Bering and Chukchi Sea
shelves, associated with sea ice decline (Hirawake et al., 2021, extensive
references therein). In the follow-up ArCS II project (2020-2025), we
further extended the efforts to the Arctic Ocean, from the Pacific
gateway including Chukchi Sea to the Pan-Arctic waters, to find new
unrecognized marine ecosystem processes and assess the ecosystems’
variability and potential vulnerability. This article reviews and high-
lights these findings. The other topics with summaries of the research
cruises, field campaigns, and modeling experiments in the ArCS II Ocean
Research Program are reported in a companion article (Watanabe et al.,
2025, in this issue).

2. Plankton and settling particles

Phytoplankton, which forms the basis of marine ecosystems, is facing
dramatic changes in its community composition (e.g., Li et al., 2009;
Fujiwara et al., 2014), productivity (e.g., Pabi et al., 2008; Arrigo et al.,
2011), and phenology (e.g., Ardyna et al., 2014; Nishino et al., 2015;
Assmy et al., 2017; Waga and Hirawake, 2020) due to the recent climate
change. They rapidly respond to the dynamic changes in available nu-
trients and light triggered by sea ice reduction and changes in ocean
circulation (Ardyna and Arrigo, 2020 and references therein). One of the
most notable scientific findings about the Arctic phytoplankton in recent
years could be the discovery of under-ice bloom (Arrigo et al., 2012,
2014). Under-ice bloom is a spring phytoplankton bloom that occurs
beneath the sea ice, which is hardly captured from the sea surface. In
addition to their findings, we found another type of “hidden bloom” that
underlies the sea floor of the vast shallow shelf region in the Arctic.

During the summer to early fall in the Arctic Ocean, surface nutrients
are exhausted, resulting in low primary production (Hill et al., 2005;
Tremblay et al., 2008; McLaughlin and Carmack, 2010). Phytoplankton
thus cannot increase in the surface water and is most abundant in the
subsurface layer (~40-50m) (Ardyna et al., 2013; Brown et al., 2015).
This subsurface phytoplankton peak is called subsurface chlorophyll
maximum (SCM). The phytoplankton in the SCM are regarded as
low-productive and stable because they do not receive sufficient light
and nutrients (Ardyna and Arrigo, 2020). However, in the Arctic Ocean,
high primary production was occasionally observed in the SCM (Lowry
et al., 2015; Martin et al., 2010). From repeated shipboard observations
in the shelf region during the ArCS II project, Shiozaki et al. (2022)
captured the development of the SCM near the seafloor in shallower
waters north of 70°N, where higher irradiance reached the seafloor.
Primary production significantly increased in the subsurface by the
phytoplankton bloom near the seafloor. While the primary production
monitored by satellite observation is generally assumed to be higher
near the surface (e.g., Behrenfeld and Falkowski, 1997; Pabi et al.,
2008), the new result highlighted that the bottom-associated diatom
bloom could account for a large part of primary production on a local
scale. Shiozaki et al. (2022) further estimated that the
sediment-associated bloom accounts for 24 % of the shelf region in July
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in the eastern Siberian Sea, Canadian Arctic Archipelago, Foxe Basin,
Chukchi Sea, and Barents Sea.

The bottom-associated bloom was mainly caused by diatoms
(Shiozaki et al., 2022). Diatoms increase on the surface by spring bloom
but sink and accumulate in the sediment (Leu et al., 2015). Diatoms
produce resting stages to facilitate survival during periods that are less
favorable for growth (McQuoid and Hobson, 1996), and they are
distributed in sediments of the Arctic shelf (Tsukazaki et al., 2018).
Resting stages of diatoms in sediments can resume growth in response to
favorable light levels (Hollibaugh et al., 1981). Using a combination of
physiological and microcosm experiments, Fukai et al. (2021) and
(2022) confirmed abundant diatom resting stage cells broadly underly in
the sediment across the Northern Bering and Chukchi shelf. From these
findings from observational facts and experimental analysis conducted
in the ArCS II project (Shiozaki et al., 2022; Fukai et al., 2021, 2022), a
new hypothesis has emerged that the bottom-associated hidden bloom
may now be widespread across the shallow Arctic shelf regions along
with sea ice reduction due to climate change.

Observation of settling particle flux with a moored sediment trap in
the Pacific Arctic from 2010 to 2022 showed that the particle flux for the
late 2010s increased compared to the early 2010s (Onodera et al., in
prep.) During summer, a relative increase of biogenic matter in the bulk
component, probably the active biological production, was observed
despite abundant shelf matter input mainly supplied by sub-surface
ocean currents. Much of the biogenic opal was probably planktic di-
atoms and ice algae diatoms (Onodera et al., 2021). However, in winter,
the contribution of radiolarian shells (Ikenoue et al., 2021) and resus-
pended fragments of siliceous microplanktons was relatively significant
(Onodera et al., 2021).

3. Zooplankton

Zooplankton are secondary producers of the marine ecosystem and
comprise a vital link between primary production and higher trophic
levels in the Pacific Arctic Ocean (Lowry et al., 2004; Ashjian et al.,
2010). Calanus glacialis/marshallae are dominant large copepods in the
region (Abe et al., 2020), but there is little information about regional
and diel changes in population structure and grazing features. A
remarkable early sea-ice reduction event observed in 2018 affected
several marine trophic levels, resulting in delayed phytoplankton
blooms (Kikuchi et al., 2020), phytoplankton community changes (Fukai
et al., 2020), and a northward shift of fish stocks (Duffy-Anderson et al.,
2019), but responses in zooplankton was unclear. Comparing the
zooplankton community, population structure for dominant copepods,
and size structure between 2017 and 2018, the response to the sea-ice
reduction was investigated in the Chirikov Basin. While the
zooplankton community in 2017 event included abundant Pacific co-
pepods transported by the Anadyr water (Kimura et al., 2022), the
community was dominated by small copepods (Duffy-Anderson et al.,
2019), bivalve larvae and younger stages of large copepods
(C. glacialis/marshallae and Metridia pacifica), which was likely caused
by reproduction delays resulting from the early sea-ice reduction event
(Kimura et al., 2022). Relating the dominance of small-sized species, low
biomass and low transfer efficiency in the lower trophic levels were
revealed by normalized size spectra analysis derived by a ZooSCAN
(Kumagai et al., 2023). These results suggest the prevalence of
low-nutrient foods for higher trophic levels in 2018 with early sea ice
melt. Thus, a drastic sea-ice variation would impact the zooplankton
community in the Pacific Arctic Ocean, but it was different between the
regions (Abe et al., 2020). At the connecting area (e.g., Bering Strait),
the zooplankton community was changed by increasing Pacific water
inflow (Matsuno et al., 2011; Ershova et al., 2015). On the other hand, in
the northern Chukchi Sea, a low-biomass community was found (Abe
et al., 2020).

Climate changes could impact zooplankton in the Pacific Arctic
(Skjoldal, 2022), but their intensity would vary depending on the
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flexibility in the physiology of the species (Balazy et al., 2021). Calanus
glacialis/marshallae are dominant large copepods in the Pacific Arctic,
but there is little information about regional and diel changes in popu-
lation structure and grazing features. Ishihara et al. (2023) analyzed
geographic and diel variations for C. glacialis/marshallae in population
structure, body size, grazing activity, and fatty acid composition. It was
found that C. glacialis/marshallae exhibited high flexibility toward
environmental changes. In the northern Chukchi shelf, the populations
also showed higher concentrations of fatty acids originating from di-
noflagellates than those originating from the pan-Arctic Ocean, indi-
cating low productivity in the region. In the basin, small and large forms
of copepodite stage five were simultaneously found, and the small form
exhibited a diel grazing activity pattern, but the large forms did not.
These findings suggest their good adaptation to the changing of the
Pacific Arctic Ocean.

According to the regional comparison of mesozooplankton trapped
in sediment traps for 2010-2014 in the southern Northwind Abyssal
Plain (NAP) (Tokuhiro et al., 2024), the timing of seasonal descent of
Calanus hyperboreus, which is the representative herbivorous copepod in
the Arctic Ocean, was different among NAP, the Fram Strait, and the
MacKenzie Trough. The reproduction of C. hyperboreus at NAP in the
early 2010s was less active than that in the Fram Strait and the MacK-
enzie Trough (Tokuhiro et al., 2024). However, this regional difference
in the mesozooplankton population structure might be further changed
with physical oceanographic changes after the late 2010s. The studied
sediment trap captured a large amount of discarded Appendicularian
“house” in summer (Onodera et al., 2021), which might be an important
carbon transporter to the ocean interior in the region.

4. Polar cod

The polar cod (Boreogadus saida) is considered a key species in the
Arctic ecosystem, supporting the food web as a primary prey for various
predators (Geoffroy et al., 2023; Steiner et al., 2021). Increasing water
temperature and retreating sea ice drive the distributional shift of polar
cod (Levine et al., 2023; De Robertis et al., 2017) and potentially have a
negative effect on its population (Huserbraten et al., 2019; Florko et al.,
2021). Environmental DNA (eDNA), a composite of genetic materials
originating from aquatic animals, can indirectly indicate the presence of
source organisms (Barnes and Turner, 2016), such as the polar cod.
eDNA can be detected using species-specific assay focusing on target
species or metabarcoding to comprehensively describe the biodiversity
across various taxa (e.g., Deiner et al., 2017; Shelton et al., 2022).
Because the eDNA technique has sufficient sensitivity to evaluate the
distribution of fish species in the ocean (e.g., Jensen et al., 2023; Shelton
et al., 2022), it would provide valuable baseline data for understanding
the ecological importance of polar cod.

Although the potential of eDNA to investigate fish distribution is
widely recognized, its application in the Arctic is limited, particularly
for fish. In the Atlantic Arctic, Jensen et al. (2023) described latitudinal
changes in the fish community around Greenland, which included cod
species (Gadidae) such as polar cod, using eDNA metabarcoding. How-
ever, no eDNA study has been conducted to explore the distribution of
polar cod in the Pacific Arctic. Kawakami et al. (2023b) successfully
described the horizontal distribution of polar cod in surface water across
the Bering and Chukchi Seas using a newly devised eDNA assay. Polar
cod eDNA was detected primarily in the central part of the Chukchi Sea
shelf, the marginal ice zone along 75°N, and the shelf slope off Point
Barrow. The eDNA was most frequently and abundantly detected in the
sites with cold, less saline water, while no eDNA was detected in the sites
with warm and saline water. Current knowledge about the distribution
and habitat of the polar cod (e.g., Forster et al., 2020; Geoffroy et al.,
2023) was consistent with these findings, suggesting that eDNA can
serve as a reliable tool to supplement or replace conventional methods.
eDNA metabarcoding can evaluate interactions across multiple trophic
levels (Deeg et al., 2023; Djurhuus et al., 2020), thus helping to assess
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how fluctuations in the polar cod population impact the ecosystem.
Before applying the metabarcoding to the Arctic environmental sample,
we evaluated how the sampling method affects the detection of fish
eDNA (Kawakami et al., 2023a). We also used eDNA metabarcoding to
investigate metazoan diversity and its environmental drivers in the
Chukchi Sea, including a wide range of invertebrates that may occur
sympatrically with polar cod (Verhaegen et al., 2025). Expanding eDNA
techniques based on robust methodology will help fill the knowledge
gaps Geoffroy et al. (2023) suggested about how various stressors in-
fluence polar cod.

5. Marine biodiversity

Sub-Arctic and Arctic seas have been increasingly exposed to rapid
climatic changes over the last few decades, resulting in changes in their
physical and biogeochemical characteristics (Polyakov et al., 2025;
Nishino et al., 2023; Drinkwater et al., 2021; Mueter et al., 2021a).
These significantly impact the marine ecosystem structure and function,
evidenced by biogeographic shifts (Bernardo et al., 2024; Axler et al.,
2023; Baker et al., 2023; Brandt et al., 2023; Levine et al., 2023;
Jorgensen et al., 2022; Alabia et al., 2018) and future reorganization of
marine communities (Arthun et al., 2025; Nilsen et al., 2025; Mueter
et al., 2021a). While these emphasize the need better to understand the
regional climate-driven ecological impacts on marine communities, our
existing knowledge of marine biodiversity and stressors in these regions
remains limited, as is our understanding of their trends and impacts
(CAFF, 2013). Alabia et al. (2023) investigated recent marine biodi-
versity trends based on species richness and composition (Baselga,
2017) and pair-wise co-occurrences (Griffith et al., 2016), revealing an
overall increase in species richness throughout the Arctic in the last 20
years. Further, regional biodiversity changes were accompanied by
variations in co-occurring taxa over time, suggesting the formation of
novel trophic interactions and potential trophic mismatches (Alabia
et al., 2023).

Meanwhile, in a part of the Pacific Arctic region (i.e., Northeastern
Bering and Southern Chukchi seas) and adjacent subarctic sea (i.e.,
southeastern Bering Sea), it was found that larger, longer-lived and more
predatory fish and invertebrates would expand their ranges towards the
north pole in response to warming waters and sea ice change, preying on
and altering the composition and functions of the current Arctic com-
munities (Alabia et al., 2020). Two distinct marine biodiversity refugia
were also discovered in the north and south parts of the middle shelf of
the southeastern Bering Sea, which overall covered less than 10 % of the
study region yet harbored 91 % of the entire species pool (144 out of 159
species) over the last 29 years (Alabia et al., 2021). Climate buffering
and sustained productivity within these areas potentially permit the
persistence of stable communities and high marine biodiversity. These
biodiversity refugia, albeit small, will be increasingly crucial for pre-
serving marine communities in this climate-exposed yet highly pro-
ductive ecosystem.

Alabia et al. (2024) investigated the future abundance changes of
eight major commercial fisheries under contrasting CMIP6 climate and
socio-economic narratives. They revealed that species abundance fluc-
tuations led to pronounced changes in the future maximum catch, rev-
enue, and profit potential, suggesting ensuing trade-offs of shifting
fisheries resources under contrasting climate change scenarios. Pro-
jected redistributions of maximum catch potential adjacent to major
fishing ports could further alter the future fishing fleet dynamics. These
findings support the mounting evidence of exacerbated future climate
impacts on marine ecosystems and their socioeconomic repercussions
(Cheung et al., 2022; Tittensor et al., 2021; Boyce et al., 2020). Hence, it
entails establishing and implementing climate-adaptive and
forward-looking management strategies to mitigate their anticipated
impacts (Free et al., 2020; Holsman et al., 2020).
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Fig. 1. Conceptual sketch of the marine ecosystem influenced by natural and anthropogenic pressures in the Earth system.

6. Ecosystem assessment

The recent retreat of sea ice in the Arctic Ocean, caused by climate
change, has increased anthropogenic activities such as shipping and
fishing (Berkman et al., 2022; Heaney et al., 2024; PAME, 2020). These
activities, including shipping, oil/gas exploitation, fishing, etc., have
threatened marine ecosystems by acoustically intruding on the habitats
of marine species (Haver et al., 2017). Arctic ship traffic can also elevate
exhaust levels of COy and SOx (Eckhardt et al., 2013). They can signif-
icantly impact ocean pH and lead to ocean acidification (Hunter et al.,
2011; Evans and Shibata, 2022), affecting marine organisms (AMAP,
2013, 2018). Moreover, commercial shipping is a significant cause of the
introduction of non-native marine species (Miller and Ruiz, 2014).
Invasive alien species are the critical drivers of biodiversity loss (Bellard
et al., 2016), and the pathways of invasion in the Arctic include ballast
water and hull biofouling from shipping activities, among others (CAFF
and PAME, 2017). Thus, maritime traffic imposes various anthropogenic
pressures on Arctic marine ecosystems. Yet, overall impact assessment
on the ecosystem, which distinguishes but simultaneously considers
natural and anthropogenic pressures, remains a challenge.

The impact of natural and anthropogenic pressures on Arctic marine
ecosystems was assessed using the biodiversity of marine species
(Kaschner et al., 2019) and primary production (Kahru et al., 2016) as
key ecological indicators. To represent the natural pressures, a dimen-
sionality reduction analysis was carried out over Planetary Boundaries
processes (Rockstrom et al., 2009; Steffen et al., 2015). The anthropo-
genic pressure was determined from the same analysis over transit time,
source-level noise, and exhaust (NOx + SOx) of >20,000 ships using
marine traffic data obtained from the Automatic Identification System
(IMO, 2002). The response of marine ecosystems to the pressures was
evaluated by comparing the variability among the ecosystem and pres-
sures. Marine ecosystem response was geographically heterogeneous
over the Arctic Ocean; a relatively large response to these external
pressures was inferred in the Arctic gateways on both the Pacific and the
Atlantic sides from the present analysis (Hirata et al., in preparation).
The ecosystem response on the Pacific gateway might be affected mainly
by natural environmental pressure rather than anthropogenic pressure.
In contrast, the response on the Atlantic gateway was suspected to
include some impacs from anthropogenic pressure. The greater

ecosystem response on the Arctic gateways found in the analysis was
ecologically consistent with the independent analysis of underlying
physics (e.g., Woodgate, 2018; Polyakov et al., 2020) as well as bioge-
ography of marine communities (e.g., Csapo et al., 2021; Mueter et al.,
2021b; Alabia et al., 2023). These implications, together with Ecosystem
Overviews (Jorgensen et al., 2021; ICES, 2023) and ecological resilience
research (e.g., Griffith et al., 2019), add to the scientific basis required
for ecosystem-based management in the Arctic (Arctic Council, 2013;
Wienrich et al., 2022).

7. Summary and outlook

In the second phase of the Arctic Challenge for Sustainability project,
marine ecosystem research was extended to biodiversity and system
response from the previous phase while further elaborating various
knowledge gaps at different trophic levels. New scientific findings here,
such as changes in Arctic marine communities at both trophic and
ecosystem scales, unveiled the invisible impacts of visible sea ice
reduction in the Arctic. A new hypothesis of the possible significance
biological production near seafloor also emerged for further investiga-
tion. We successfully added a scientific basis valuable for ecosystem-
based management through these multi- and cross-scale in-
vestigations, with the development of eDNA technique that will effec-
tively allow them. The emergence of new issues, such as marine plastics
(e.g. Bergmann et al., 2022; Ikenoue et al., 2023), which were not
covered here, emphasizes the importance of including human impacts in
ecosystem assessments on trophic and ecosystem scales. Evaluating their
direct and indirect effects should be integrated into the ecosystem
assessment. There is a growing need for a systematic evaluation of Arctic
ecosystems that incorporates the human dimension into the conven-
tional concept of the Earth system (Fig. 1).
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