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A B S T R A C T

The Arctic marine ecosystems, extending from microbial communities to the system response to environmental 
and human pressures, were investigated in the Arctic Challenge for Sustainability II (ArCS II) project, a nationally 
coordinated Arctic project in Japan. New findings and hypotheses emerged: a) bottom sediments on a continental 
shelf contained a significant amount of the bloom-causing viable diatom, and more primary production may be 
occurring over a water column than previously thought, b) particle flux containing biogenic opal increased over 
the 2010s, c) large copepod Calanus glacialis/marshallae exhibited flexibility on grazing in the Pacific Arctic 
Ocean, suggesting their high adaptation to environmental changes, d) a novel environmental DNA (eDNA) 
technique succeeded in the identification of polar cod distribution, e) there was an increase in species richness 
over the last 20 years due to the poleward shift of habitat ranges of marine predatory species, f) Arctic marine 
ecosystems may have a larger sensitivity to external forcings around the Pacific and Atlantic gateways. This 
article reviews and highlights these findings in the context of specific science questions and delivers Japan’s 
contribution to the integrated assessment of Arctic marine ecosystems.

1. Introduction

A significant reduction of Arctic sea ice during recent years 
(Druckenmiller et al., 2020; Meier et al., 2023) is a symbolic symptom of 
our planet in response to anthropogenically driven global climate 
change. The retreat of the sea ice is now allowing a direct and unprec
edented expansion of human activities into the Arctic with modern in
dustrial machinery such as fishing, shipping, cruising, etc. (Stocker 
et al., 2020; Dawson et al., 2020). Despite such visible changes in the 
natural environment and the extent of human intervention in the Arctic, 
their impacts on marine ecosystems are not necessarily visible and 
poorly recognized. International efforts have been developed in various 

frameworks for the visualization (e.g. ICES, 2021; 2023, CAFF, 2021; 
PAME,2008, 2013) and earlier and recent studies in the Arctic have 
shown the differences in physical and biological structures among eco
systems (Kang et al., 2024; Rudels and Carmack, 2022; Drinkwater et al., 
2021; Mueter et al., 2021a), stressing the need to understand regional 
ecological impacts. Some studies showed evidence of these impacts, for 
example, on species abundance (CAFF, 2013), recruitment (David et al., 
2025), and biogeographic shifts of organisms (Kim et al., 2024; Orlov 
and Volvenko, 2024; Baker et al., 2023; Gordó-Vilaseca et al., 2023; 
Jørgensen et al., 2022; Stafford et al., 2022; Frainer et al., 2021) as well 
as future change in marine communities and biodiversity (e.g. Stroeve 
et al., 2025; Hodapp et al., 2023; Mueter et al., 2021a; Alabia et al., 
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2020). While Arctic research efforts are gaining momentum, climate 
change research remains comparably sparse in this region relative to 
other marine biomes, impeding conservation efforts (Deb and Bailey, 
2023). Impact assessment of Arctic ecosystems due to the combined 
effects of natural and anthropogenic stressors is an urgent international 
task towards achieving sustainable ecosystem management against un
regulated and overused environmental resources and ecosystem services 
in the Arctic.

Two nationally-organized projects for Arctic research, such as the 
Green Network of Excellence (GRENE) Arctic Climate Change Research 
project (2011–2016) (Yamanouchi and Takata, 2020) and the Arctic 
Challenge for Sustainability (ArCS) project (2015–2020) (Sueyoshi 
et al., 2021), were launched in Japan. Marine ecosystem studies have 
been conducted as one of Japan’s contributions to the international ef
forts to understand the Arctic marine ecosystems. One of the significant 
ecological findings was the northward transport and shift of marine 
species across multiple trophic levels over the Bering and Chukchi Sea 
shelves, associated with sea ice decline (Hirawake et al., 2021, extensive 
references therein). In the follow-up ArCS II project (2020–2025), we 
further extended the efforts to the Arctic Ocean, from the Pacific 
gateway including Chukchi Sea to the Pan-Arctic waters, to find new 
unrecognized marine ecosystem processes and assess the ecosystems’ 
variability and potential vulnerability. This article reviews and high
lights these findings. The other topics with summaries of the research 
cruises, field campaigns, and modeling experiments in the ArCS II Ocean 
Research Program are reported in a companion article (Watanabe et al., 
2025, in this issue).

2. Plankton and settling particles

Phytoplankton, which forms the basis of marine ecosystems, is facing 
dramatic changes in its community composition (e.g., Li et al., 2009; 
Fujiwara et al., 2014), productivity (e.g., Pabi et al., 2008; Arrigo et al., 
2011), and phenology (e.g., Ardyna et al., 2014; Nishino et al., 2015; 
Assmy et al., 2017; Waga and Hirawake, 2020) due to the recent climate 
change. They rapidly respond to the dynamic changes in available nu
trients and light triggered by sea ice reduction and changes in ocean 
circulation (Ardyna and Arrigo, 2020 and references therein). One of the 
most notable scientific findings about the Arctic phytoplankton in recent 
years could be the discovery of under-ice bloom (Arrigo et al., 2012, 
2014). Under-ice bloom is a spring phytoplankton bloom that occurs 
beneath the sea ice, which is hardly captured from the sea surface. In 
addition to their findings, we found another type of “hidden bloom” that 
underlies the sea floor of the vast shallow shelf region in the Arctic.

During the summer to early fall in the Arctic Ocean, surface nutrients 
are exhausted, resulting in low primary production (Hill et al., 2005; 
Tremblay et al., 2008; McLaughlin and Carmack, 2010). Phytoplankton 
thus cannot increase in the surface water and is most abundant in the 
subsurface layer (~40–50m) (Ardyna et al., 2013; Brown et al., 2015). 
This subsurface phytoplankton peak is called subsurface chlorophyll 
maximum (SCM). The phytoplankton in the SCM are regarded as 
low-productive and stable because they do not receive sufficient light 
and nutrients (Ardyna and Arrigo, 2020). However, in the Arctic Ocean, 
high primary production was occasionally observed in the SCM (Lowry 
et al., 2015; Martin et al., 2010). From repeated shipboard observations 
in the shelf region during the ArCS II project, Shiozaki et al. (2022)
captured the development of the SCM near the seafloor in shallower 
waters north of 70◦N, where higher irradiance reached the seafloor. 
Primary production significantly increased in the subsurface by the 
phytoplankton bloom near the seafloor. While the primary production 
monitored by satellite observation is generally assumed to be higher 
near the surface (e.g., Behrenfeld and Falkowski, 1997; Pabi et al., 
2008), the new result highlighted that the bottom-associated diatom 
bloom could account for a large part of primary production on a local 
scale. Shiozaki et al. (2022) further estimated that the 
sediment-associated bloom accounts for 24 % of the shelf region in July 

in the eastern Siberian Sea, Canadian Arctic Archipelago, Foxe Basin, 
Chukchi Sea, and Barents Sea.

The bottom-associated bloom was mainly caused by diatoms 
(Shiozaki et al., 2022). Diatoms increase on the surface by spring bloom 
but sink and accumulate in the sediment (Leu et al., 2015). Diatoms 
produce resting stages to facilitate survival during periods that are less 
favorable for growth (McQuoid and Hobson, 1996), and they are 
distributed in sediments of the Arctic shelf (Tsukazaki et al., 2018). 
Resting stages of diatoms in sediments can resume growth in response to 
favorable light levels (Hollibaugh et al., 1981). Using a combination of 
physiological and microcosm experiments, Fukai et al. (2021) and 
(2022) confirmed abundant diatom resting stage cells broadly underly in 
the sediment across the Northern Bering and Chukchi shelf. From these 
findings from observational facts and experimental analysis conducted 
in the ArCS II project (Shiozaki et al., 2022; Fukai et al., 2021, 2022), a 
new hypothesis has emerged that the bottom-associated hidden bloom 
may now be widespread across the shallow Arctic shelf regions along 
with sea ice reduction due to climate change.

Observation of settling particle flux with a moored sediment trap in 
the Pacific Arctic from 2010 to 2022 showed that the particle flux for the 
late 2010s increased compared to the early 2010s (Onodera et al., in 
prep.) During summer, a relative increase of biogenic matter in the bulk 
component, probably the active biological production, was observed 
despite abundant shelf matter input mainly supplied by sub-surface 
ocean currents. Much of the biogenic opal was probably planktic di
atoms and ice algae diatoms (Onodera et al., 2021). However, in winter, 
the contribution of radiolarian shells (Ikenoue et al., 2021) and resus
pended fragments of siliceous microplanktons was relatively significant 
(Onodera et al., 2021).

3. Zooplankton

Zooplankton are secondary producers of the marine ecosystem and 
comprise a vital link between primary production and higher trophic 
levels in the Pacific Arctic Ocean (Lowry et al., 2004; Ashjian et al., 
2010). Calanus glacialis/marshallae are dominant large copepods in the 
region (Abe et al., 2020), but there is little information about regional 
and diel changes in population structure and grazing features. A 
remarkable early sea-ice reduction event observed in 2018 affected 
several marine trophic levels, resulting in delayed phytoplankton 
blooms (Kikuchi et al., 2020), phytoplankton community changes (Fukai 
et al., 2020), and a northward shift of fish stocks (Duffy-Anderson et al., 
2019), but responses in zooplankton was unclear. Comparing the 
zooplankton community, population structure for dominant copepods, 
and size structure between 2017 and 2018, the response to the sea-ice 
reduction was investigated in the Chirikov Basin. While the 
zooplankton community in 2017 event included abundant Pacific co
pepods transported by the Anadyr water (Kimura et al., 2022), the 
community was dominated by small copepods (Duffy-Anderson et al., 
2019), bivalve larvae and younger stages of large copepods 
(C. glacialis/marshallae and Metridia pacifica), which was likely caused 
by reproduction delays resulting from the early sea-ice reduction event 
(Kimura et al., 2022). Relating the dominance of small-sized species, low 
biomass and low transfer efficiency in the lower trophic levels were 
revealed by normalized size spectra analysis derived by a ZooSCAN 
(Kumagai et al., 2023). These results suggest the prevalence of 
low-nutrient foods for higher trophic levels in 2018 with early sea ice 
melt. Thus, a drastic sea-ice variation would impact the zooplankton 
community in the Pacific Arctic Ocean, but it was different between the 
regions (Abe et al., 2020). At the connecting area (e.g., Bering Strait), 
the zooplankton community was changed by increasing Pacific water 
inflow (Matsuno et al., 2011; Ershova et al., 2015). On the other hand, in 
the northern Chukchi Sea, a low-biomass community was found (Abe 
et al., 2020).

Climate changes could impact zooplankton in the Pacific Arctic 
(Skjoldal, 2022), but their intensity would vary depending on the 
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flexibility in the physiology of the species (Balazy et al., 2021). Calanus 
glacialis/marshallae are dominant large copepods in the Pacific Arctic, 
but there is little information about regional and diel changes in popu
lation structure and grazing features. Ishihara et al. (2023) analyzed 
geographic and diel variations for C. glacialis/marshallae in population 
structure, body size, grazing activity, and fatty acid composition. It was 
found that C. glacialis/marshallae exhibited high flexibility toward 
environmental changes. In the northern Chukchi shelf, the populations 
also showed higher concentrations of fatty acids originating from di
noflagellates than those originating from the pan-Arctic Ocean, indi
cating low productivity in the region. In the basin, small and large forms 
of copepodite stage five were simultaneously found, and the small form 
exhibited a diel grazing activity pattern, but the large forms did not. 
These findings suggest their good adaptation to the changing of the 
Pacific Arctic Ocean.

According to the regional comparison of mesozooplankton trapped 
in sediment traps for 2010–2014 in the southern Northwind Abyssal 
Plain (NAP) (Tokuhiro et al., 2024), the timing of seasonal descent of 
Calanus hyperboreus, which is the representative herbivorous copepod in 
the Arctic Ocean, was different among NAP, the Fram Strait, and the 
MacKenzie Trough. The reproduction of C. hyperboreus at NAP in the 
early 2010s was less active than that in the Fram Strait and the MacK
enzie Trough (Tokuhiro et al., 2024). However, this regional difference 
in the mesozooplankton population structure might be further changed 
with physical oceanographic changes after the late 2010s. The studied 
sediment trap captured a large amount of discarded Appendicularian 
“house” in summer (Onodera et al., 2021), which might be an important 
carbon transporter to the ocean interior in the region.

4. Polar cod

The polar cod (Boreogadus saida) is considered a key species in the 
Arctic ecosystem, supporting the food web as a primary prey for various 
predators (Geoffroy et al., 2023; Steiner et al., 2021). Increasing water 
temperature and retreating sea ice drive the distributional shift of polar 
cod (Levine et al., 2023; De Robertis et al., 2017) and potentially have a 
negative effect on its population (Huserbråten et al., 2019; Florko et al., 
2021). Environmental DNA (eDNA), a composite of genetic materials 
originating from aquatic animals, can indirectly indicate the presence of 
source organisms (Barnes and Turner, 2016), such as the polar cod. 
eDNA can be detected using species-specific assay focusing on target 
species or metabarcoding to comprehensively describe the biodiversity 
across various taxa (e.g., Deiner et al., 2017; Shelton et al., 2022). 
Because the eDNA technique has sufficient sensitivity to evaluate the 
distribution of fish species in the ocean (e.g., Jensen et al., 2023; Shelton 
et al., 2022), it would provide valuable baseline data for understanding 
the ecological importance of polar cod.

Although the potential of eDNA to investigate fish distribution is 
widely recognized, its application in the Arctic is limited, particularly 
for fish. In the Atlantic Arctic, Jensen et al. (2023) described latitudinal 
changes in the fish community around Greenland, which included cod 
species (Gadidae) such as polar cod, using eDNA metabarcoding. How
ever, no eDNA study has been conducted to explore the distribution of 
polar cod in the Pacific Arctic. Kawakami et al. (2023b) successfully 
described the horizontal distribution of polar cod in surface water across 
the Bering and Chukchi Seas using a newly devised eDNA assay. Polar 
cod eDNA was detected primarily in the central part of the Chukchi Sea 
shelf, the marginal ice zone along 75◦N, and the shelf slope off Point 
Barrow. The eDNA was most frequently and abundantly detected in the 
sites with cold, less saline water, while no eDNA was detected in the sites 
with warm and saline water. Current knowledge about the distribution 
and habitat of the polar cod (e.g., Forster et al., 2020; Geoffroy et al., 
2023) was consistent with these findings, suggesting that eDNA can 
serve as a reliable tool to supplement or replace conventional methods. 
eDNA metabarcoding can evaluate interactions across multiple trophic 
levels (Deeg et al., 2023; Djurhuus et al., 2020), thus helping to assess 

how fluctuations in the polar cod population impact the ecosystem. 
Before applying the metabarcoding to the Arctic environmental sample, 
we evaluated how the sampling method affects the detection of fish 
eDNA (Kawakami et al., 2023a). We also used eDNA metabarcoding to 
investigate metazoan diversity and its environmental drivers in the 
Chukchi Sea, including a wide range of invertebrates that may occur 
sympatrically with polar cod (Verhaegen et al., 2025). Expanding eDNA 
techniques based on robust methodology will help fill the knowledge 
gaps Geoffroy et al. (2023) suggested about how various stressors in
fluence polar cod.

5. Marine biodiversity

Sub-Arctic and Arctic seas have been increasingly exposed to rapid 
climatic changes over the last few decades, resulting in changes in their 
physical and biogeochemical characteristics (Polyakov et al., 2025; 
Nishino et al., 2023; Drinkwater et al., 2021; Mueter et al., 2021a). 
These significantly impact the marine ecosystem structure and function, 
evidenced by biogeographic shifts (Bernardo et al., 2024; Axler et al., 
2023; Baker et al., 2023; Brandt et al., 2023; Levine et al., 2023; 
Jørgensen et al., 2022; Alabia et al., 2018) and future reorganization of 
marine communities (Årthun et al., 2025; Nilsen et al., 2025; Mueter 
et al., 2021a). While these emphasize the need better to understand the 
regional climate-driven ecological impacts on marine communities, our 
existing knowledge of marine biodiversity and stressors in these regions 
remains limited, as is our understanding of their trends and impacts 
(CAFF, 2013). Alabia et al. (2023) investigated recent marine biodi
versity trends based on species richness and composition (Baselga, 
2017) and pair-wise co-occurrences (Griffith et al., 2016), revealing an 
overall increase in species richness throughout the Arctic in the last 20 
years. Further, regional biodiversity changes were accompanied by 
variations in co-occurring taxa over time, suggesting the formation of 
novel trophic interactions and potential trophic mismatches (Alabia 
et al., 2023).

Meanwhile, in a part of the Pacific Arctic region (i.e., Northeastern 
Bering and Southern Chukchi seas) and adjacent subarctic sea (i.e., 
southeastern Bering Sea), it was found that larger, longer-lived and more 
predatory fish and invertebrates would expand their ranges towards the 
north pole in response to warming waters and sea ice change, preying on 
and altering the composition and functions of the current Arctic com
munities (Alabia et al., 2020). Two distinct marine biodiversity refugia 
were also discovered in the north and south parts of the middle shelf of 
the southeastern Bering Sea, which overall covered less than 10 % of the 
study region yet harbored 91 % of the entire species pool (144 out of 159 
species) over the last 29 years (Alabia et al., 2021). Climate buffering 
and sustained productivity within these areas potentially permit the 
persistence of stable communities and high marine biodiversity. These 
biodiversity refugia, albeit small, will be increasingly crucial for pre
serving marine communities in this climate-exposed yet highly pro
ductive ecosystem.

Alabia et al. (2024) investigated the future abundance changes of 
eight major commercial fisheries under contrasting CMIP6 climate and 
socio-economic narratives. They revealed that species abundance fluc
tuations led to pronounced changes in the future maximum catch, rev
enue, and profit potential, suggesting ensuing trade-offs of shifting 
fisheries resources under contrasting climate change scenarios. Pro
jected redistributions of maximum catch potential adjacent to major 
fishing ports could further alter the future fishing fleet dynamics. These 
findings support the mounting evidence of exacerbated future climate 
impacts on marine ecosystems and their socioeconomic repercussions 
(Cheung et al., 2022; Tittensor et al., 2021; Boyce et al., 2020). Hence, it 
entails establishing and implementing climate-adaptive and 
forward-looking management strategies to mitigate their anticipated 
impacts (Free et al., 2020; Holsman et al., 2020).
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6. Ecosystem assessment

The recent retreat of sea ice in the Arctic Ocean, caused by climate 
change, has increased anthropogenic activities such as shipping and 
fishing (Berkman et al., 2022; Heaney et al., 2024; PAME, 2020). These 
activities, including shipping, oil/gas exploitation, fishing, etc., have 
threatened marine ecosystems by acoustically intruding on the habitats 
of marine species (Haver et al., 2017). Arctic ship traffic can also elevate 
exhaust levels of CO2 and SOx (Eckhardt et al., 2013). They can signif
icantly impact ocean pH and lead to ocean acidification (Hunter et al., 
2011; Evans and Shibata, 2022), affecting marine organisms (AMAP, 
2013, 2018). Moreover, commercial shipping is a significant cause of the 
introduction of non-native marine species (Miller and Ruiz, 2014). 
Invasive alien species are the critical drivers of biodiversity loss (Bellard 
et al., 2016), and the pathways of invasion in the Arctic include ballast 
water and hull biofouling from shipping activities, among others (CAFF 
and PAME, 2017). Thus, maritime traffic imposes various anthropogenic 
pressures on Arctic marine ecosystems. Yet, overall impact assessment 
on the ecosystem, which distinguishes but simultaneously considers 
natural and anthropogenic pressures, remains a challenge.

The impact of natural and anthropogenic pressures on Arctic marine 
ecosystems was assessed using the biodiversity of marine species 
(Kaschner et al., 2019) and primary production (Kahru et al., 2016) as 
key ecological indicators. To represent the natural pressures, a dimen
sionality reduction analysis was carried out over Planetary Boundaries 
processes (Rockström et al., 2009; Steffen et al., 2015). The anthropo
genic pressure was determined from the same analysis over transit time, 
source-level noise, and exhaust (NOx + SOx) of >20,000 ships using 
marine traffic data obtained from the Automatic Identification System 
(IMO, 2002). The response of marine ecosystems to the pressures was 
evaluated by comparing the variability among the ecosystem and pres
sures. Marine ecosystem response was geographically heterogeneous 
over the Arctic Ocean; a relatively large response to these external 
pressures was inferred in the Arctic gateways on both the Pacific and the 
Atlantic sides from the present analysis (Hirata et al., in preparation). 
The ecosystem response on the Pacific gateway might be affected mainly 
by natural environmental pressure rather than anthropogenic pressure. 
In contrast, the response on the Atlantic gateway was suspected to 
include some impacs from anthropogenic pressure. The greater 

ecosystem response on the Arctic gateways found in the analysis was 
ecologically consistent with the independent analysis of underlying 
physics (e.g., Woodgate, 2018; Polyakov et al., 2020) as well as bioge
ography of marine communities (e.g., Csapó et al., 2021; Mueter et al., 
2021b; Alabia et al., 2023). These implications, together with Ecosystem 
Overviews (Jørgensen et al., 2021; ICES, 2023) and ecological resilience 
research (e.g., Griffith et al., 2019), add to the scientific basis required 
for ecosystem-based management in the Arctic (Arctic Council, 2013; 
Wienrich et al., 2022).

7. Summary and outlook

In the second phase of the Arctic Challenge for Sustainability project, 
marine ecosystem research was extended to biodiversity and system 
response from the previous phase while further elaborating various 
knowledge gaps at different trophic levels. New scientific findings here, 
such as changes in Arctic marine communities at both trophic and 
ecosystem scales, unveiled the invisible impacts of visible sea ice 
reduction in the Arctic. A new hypothesis of the possible significance 
biological production near seafloor also emerged for further investiga
tion. We successfully added a scientific basis valuable for ecosystem- 
based management through these multi- and cross-scale in
vestigations, with the development of eDNA technique that will effec
tively allow them. The emergence of new issues, such as marine plastics 
(e.g. Bergmann et al., 2022; Ikenoue et al., 2023), which were not 
covered here, emphasizes the importance of including human impacts in 
ecosystem assessments on trophic and ecosystem scales. Evaluating their 
direct and indirect effects should be integrated into the ecosystem 
assessment. There is a growing need for a systematic evaluation of Arctic 
ecosystems that incorporates the human dimension into the conven
tional concept of the Earth system (Fig. 1).
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