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Abstract: The intensity and frequency of harmful algal blooms (HABs) have increased, posing a threat
to human seafood resources due to massive kills of cultured fish and toxin contamination of bivalves.
In recent years, bacteria that inhibit the growth of HAB species were found to be densely populated
on the biofilms of some macroalgal species, indicating the possible biological control of HABs by
the artificial introduction of macroalgal beds. In this study, an artificially created Ulva pertusa bed
using mobile floating cages and a natural macroalgal bed were studied to elucidate the distribution
of algal growth-limiting bacteria (GLB). The density of GLB affecting fish-killing raphidophyte
Chattonella antiqua, and two harmful dinoflagellates, were detected between 106 and 107 CFU g−1

wet weight on the biofilm of artificially introduced U. pertusa and 10 to 102 CFU mL−1 from adjacent
seawater; however, GLB found from natural macroalgal species targeted all tested HAB species (five
species), ranging between 105 and 106 CFU g−1 wet weight in density. These findings provide new
ecological insights of GLB at macroalgal beds, and concurrently demonstrate the possible biological
control of HABs by artificially introduced Ulva beds.
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1. Introduction

Harmful algal blooms (HABs) are naturally-occurring phenomena in fresh and marine water
systems, often causing severe damage to the fishery industry worldwide, through massive kills of
commercially cultured fishes and toxin-contamination of shellfish leading to closures of commercial
shellfish harvests, and, in some cases, consumption of contaminated shellfish results in human illness
and even death [1–3]. Lately, the acceleration of geographic expansion and intensity of HABs on a
global scale associated with climate change have been reported [4–7]. Hence, developments of effective
countermeasures to control the HAB events are even more urgent and crucial concerns. Mechanical,
chemical, genetic, biological, and environmental measures to prevent HAB have been proposed [4],
and clay dispersion is the only practical measure confirmed to control HABs formed by Cochlodinium
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polykrikoides in Korean coastal waters [8]. However, the negative impacts of clay on non-target
organisms living in the seafloor and water column are also pointed out [9–12]. The control of HABs
directly intervenes with surroundings in dynamic ocean environments, demanding an establishment
of measures as environmentally friendly as possible. Among all proposed strategies to mitigate HABs,
biological controls using naturally living organisms may have the least impact on ecosystems in the
present circumstances. Numbers of biological controls using microbes to bivalves have been proposed
and tested extensively for several decades [13–20]. In particular, bacteria that kill and/or inhibit the
growth of HAB species often associated with bloom termination have received worldwide attention as
possible biological control of HABs [21–31].

Although the use of natural pathogenicity could be environmentally friendly and cost-effective to
control HABs, introducing potentially invasive bacteria may require a careful manner [32,33]. Recently,
a biofilm of seagrass and macroalgae were found to be densely populated by algal growth-limiting
bacteria (GLB), including both algicidal and growth-inhibiting bacteria [34–37], indicating their
function as an enormous source of GLB for the adjacent seawater [31,38]. The latest microcosm study
demonstrated that seawater in the Zostera marina bed successfully suppressed artificial Chattonella
blooms [31], indicating that protection and restoration of seagrass and macroalgal beds prevent the
outbreak of HABs through providing the specific microbial communities. However, these holistic
approaches may sometimes not be flexible in actual field applications in that they often require specific
habitat characteristics such as light, sediment or substrate types, currents, bioturbation, etc. [39,40].

In this study, Ulva pertusa beds using mobile floating cages were artificially created to study the
distribution of algal growth-limiting bacteria (GLB), seeking flexible and widely applicable technologies
to control HABs. A natural macroalgal bed was also studied for comparison.

2. Materials and Methods

2.1. Installation of Artificial Ulva Bed

Yellowish-green reproductively matured Ulva pertusa thalli were provided from Wakayama
prefectural fisheries experiment station, Wakayama Prefecture, Japan. After the thallus of U. pertusa
was gently wiped and dried in the shade for 1–2 h, it was placed into a water tank filled with
autoclaved-filtered seawater [41]. Pumice stones were carefully rinsed with autoclaved seawater and
gently set to promote attachments of motile zoospore of U. pertusa [42]. Then, the pumice stones were
placed into mobile floating cages and installed on June 20, 2017, in a nearshore area by an upright
seawall at Station 1 (Stn. 1), Kushimoto-cho, Wakayama Prefecture, Japan (Figure 1). The location of
installation was carefully selected after confirming the absence of any macroalgal species in the area.
However, this may not guarantee attachments of naturally-occurring macroalgal propagules to the
tested pumice stone and cages after installation.

2.2. Sampling

Samplings were performed on 7 to 8 September 2017, at Stn. 1 (artificial Ulva bed) and Stn. 2
(a natural macroalgal bed), Taiji-cho, Wakayama Prefecture, Japan (Figure 1). The weather was mostly
cloudy during the sampling on 7 September 2017, with surface seawater temperature and salinity of
27.9 ◦C, 34.0 PSU at Stn. 1. On 8 September 2017, it was sunny with surface seawater temperature
and salinity of 29.2 ◦C, 34.7 PSU at Stn. 2. The green alga, U. pertusa, successfully grown on the
pumice stone and floating cage at Stn. 1 (Figure 2) and four dominant macroalgae (one brown alga:
Sargassum dupulicatum, one red alga: Gelidium elegans, two green algae: Cladophora ohkuboana and
U. pertusa) at Stn. 2 were sampled using sterile instruments in a sterile manner. Adjacent surface
seawater samples were also collected from both sites. Samplings were conducted at low tide, and all
the samples were collected in an autoclaved polycarbonate bottle (500 mL) filled with autoclaved,
filtered (0.7 µm GF/F) seawater. All the samples were immediately transported to the laboratory and
processed on the same day.
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Figure 2. Pictures of artificially introduced (a) Ulva beds using floating cages at Stn. 1; (b) a landed
floating cage U. pertusa is well grown; (c) U. pertusa grew on the pumice stone.

2.3. Sample Processing and Bacterial Culturing

Macroalgal samples using bottles filled with 200 mL autoclaved filtered seawater were shaken
600 times by hand using a hand tally counter to detach a biofilm formed on the surface of the macroalgae.
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Biofilm-suspended samples were serially diluted 10-fold to 10−4 with autoclaved filtered seawater,
and an aliquot (0.1 mL) of each dilution was spread onto a ST10−1 marine agar plate (Trypticase
peptone 0.5 g, Yeast extract 0.05 g and agar 15 g in 1 L seawater [43]). The adjacent seawater, also
collected from both sites, were serially diluted 10-fold to 10−4, and an aliquot (1 mL) was filtered
through autoclaved 3 µm pore size Nucleopore Track-Etch membrane filters (Whatman, GE Healthcare,
Parramatta, Australia). The filter was gently placed on a ST10−1 marine agar plate to culture the
particle-associated bacteria (PAB). An aliquot of 0.1 mL from the filtrate was also used to culture the
free-living bacteria (FLB) on the same medium above [44]. All the plates were kept for two weeks in
the dark at 20 ◦C and used for the culturable bacterial enumeration and isolation. For the isolation,
colonies were randomly picked by sterilized toothpicks from the agar plate, inoculated onto a 48-well
filled with the same bacterial medium and kept at 20 ◦C in the dark until the following co-culture
experiment. Aliquots (10 mL) from all samples were fixed with glutaraldehyde (1% final concentration)
and stored at 4 ◦C for later determination of total bacterial abundance by DAPI staining [45].

2.4. Targeted Harmful Algal Bloom (HAB) Species

Two raphidophycean flagellates, Chattonella antiqua NIES-1 and Heterosigma akashiwo 893, two
armored dinoflagellates, Alexandrium catenella, and Heterocapsa circularisquama and one unarmored
dinoflagellate, Karenia mikimotoi, were axenically grown and kept in modified SWM-3 medium [46,47].
The cultured temperature was 15 ◦C for A. catenella, 20 ◦C for H. akashiwo and 25 ◦C for C. antiqua,
H. circularisquama and K. mikimotoi under a light intensity of 50–100 µmol photons m−2 s−1 using a
14:10 h light–dark photocycle in algal growth chambers. Early stationary growth phase cultures were
used for following co-culture experiments to test bacterial growth inhibitory activities.

2.5. Co-Culture Experiment Using Bacterial Isolates

Cultured bacteria isolated from the biofilm of U. pertusa grown on the pumice stone and floating
cage (Stn. 1) and four macroalgal species (Stn. 2), as well as PAB and FLB from the surrounding seawater
at both sites, had their growth inhibitory properties determined through co-culturing experiments
(a single axenic HAB species cultured in the algal medium with a single bacterium) toward five
targeted HAB species [37]. Cell densities were diluted with the same algal medium to approximately
103 cells mL−1 for C. antiqua, A. catenella, and K. mikimotoi and 104 cells mL−1 for H. akashiwo and
H. circularisquama, then 0.8 mL aliquots were incubated for two days in sterilized disposable 48-well
microplates to check for any abnormal appearance of cells. Individual bacterial isolates were inoculated
into the algal cultures with an approximate density of 105 cells mL−1, and the plates were incubated
for another two weeks with the conditions described above for the algal cultures. Bacteria-free
quadruplicate wells (Controls) were also prepared in each microplate. A Nikon ECLIPSE TE200
inverted microscope was used for daily checks of algal cell mortality and/or any abnormalities of algal
cells. The wells with 90% or more of algal cells killed were labeled as algicidal bacteria (AB), and the
wells with 90% or more of motility reduced algal cells simultaneously were labeled as growth-inhibiting
bacteria (GIB). In this study, the term algal growth-limiting bacteria (GLB) was mainly applied to
express a set of bacteria limiting algal growth, including both AB and GIB, to eliminate repeated
usage of those terms. The density of AB and GIB was estimated using the following formula: NAG =

NV × SAG/NT (NAG is the number of AB or GIB (CFU mL−1 or CFU g−1 wet weight of macroalgae),
NV is the number of viable bacteria (CFU mL−1 or CFU g−1 wet weight of macroalgae), SAG is the
number of bacterial strains that expressed growth inhibitory properties, NT is the number of bacterial
strains examined). All of the GLB were isolated aseptically into a 48-well plate after confirming a pure
culture by the streak plate method [48].

2.6. 16S rRNA Gene Sequencing for Identification

A total of 47 bacterial strains (12 strains from Stn. 1 and 35 strains from Stn. 2) were identified by
partial 16S rRNA gene sequencing (500 bp). All strains were cultured in ST10−1 liquid medium for two
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weeks then centrifuged (8000 rpm) for 5 min to obtain bacterial pellets. Pellets were suspended in
phosphate-buffered saline and washed three times to remove the medium. Bacterial DNA was extracted
using NucleoSpin Tissue XS (TaKaRa BIO Inc., Japan) and stored at −20 ◦C. The universal primers 27F
(5′-AGAGTTTGATCMTGGCTCAG-3′ [49]) and 519R (5′-GWATTACCGCGGCKGCTG-3′ [50]) were
applied to amplify the 16S rRNA gene fragments using Blend Taq®-Plus- (TOYOBO, Japan). The PCR
temperature cycling conditions were: initial denaturation at 94 ◦C for 1 min, followed by 30 cycles
of denaturation at 94 ◦C for 30 s, annealing at 52 ◦C for 30 s, and extension at 72 ◦C for 1 min; final
elongation was for 7 min at 72 ◦C. PCR products were purified using ISOSPIN PCR Product (NIPPON
GENE CO., LTD., Japan) before sequencing. Both strands of the PCR products were sequenced using
the same primers in a cycle sequencing reaction using a sequencing kit (Big Dye Terminator Cycle
version 3.1, Applied Biosystems, USA) using a DNA sequencer (ABI 3130, Applied Biosystems, USA).
Nucleotide sequences obtained were aligned using Chromas Pro (ver. 1.7.1). Approximately 500 bp of
each consensus sequence were analyzed by A BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) sequence
similarity search to identify similarity with previously reported bacteria.

3. Results

3.1. Culturable and Total Bacterial Enumeration

The densities of culturable and total bacteria from seawater and macroalgal biofilms are shown in
Table 1 and Figure 3. The densities of culturable free-living bacteria (FLB) at both sites were higher
than particle-associated bacteria (PAB) with values of 1.7 × 103 CFU mL−1 at Stn. 1 and 2.3 × 103 CFU
mL−1 at Stn. 2, respectively (Figure 3a). The density of culturable Ulva pertusa biofilm-associated
bacteria on the pumice stone (2.4 × 108 CFU g−1 wet weight) was about ten times higher than U. pertusa
collected from the floating cage (1.9 × 107 CFU g−1 wet weight) (Figure 3b). Sargassum dupulicatum
associated culturable bacteria showed the lowest density with 7.9 × 106 CFU g−1 wet weight, and the
density of U. pertusa-associated culturable bacteria was the highest with 4.0 × 107 CFU g−1 wet weight
at natural macroalgal bed (Stn. 2, Figure 3b). The density of total bacteria in seawater at Stn. 1 was
2.9 × 106 cells mL−1 (PAB: 2.6 × 106 cells mL−1, FLB: 3.1 × 105 cells mL−1) higher than the density of
6.7 × 105 cells mL−1 (PAB: 3.9 × 105 cells mL−1, FLB: 2.8 × 105 cells mL−1) at Stn.2 (Figure 3c). In contrast
to the culturable bacterial densities, the total PAB densities were higher than those of FLB at both sites
(Figure 3a,c). The total bacterial density of U. pertusa on the pumice stone showed the maximum value
of 2.7 × 109 cells g−1 wet weight at Stn. 1 (Figure 3d) as well as culturable bacteria. Total bacterial
density of U. pertusa was the highest with the density of 1.2 × 109 cells g−1 wet weight at Stn.2 as well,
followed by Cladophora ohkuboana (9.9 × 108 cells g−1 wet weight), Gelidium elegans (6.0 × 108 cells g−1

wet weight) and S. dupulicatum (3.9 × 108 cells g−1 wet weight) (Figure 3d). U. pertusa grown on the
pumice stone appeared to be unhealthy, turning partly black in decay, and resulted in the highest
values of both the densities of culturable and total bacteria at Stn. 1.

Table 1. Summary of culturable and total bacterial densities enumerated from seawater and macroalgal
biofilms at Stns. 1 and 2. (FLB: free-living bacteria, PAB: particle-associated bacteria)

Date Station Sample Name Sample Type
Culturable Bacterial

Density (CFU mL−1 or
g−1 Wet Weight)

Total Bacterial Density
(Cells mL−1 or g−1 Wet

Weight)

2017/9/7 Stn. 1

Seawater
FLB 1.7 × 103 3.1 × 105

PAB 1.0 × 103 2.6 × 106

Ulva pertusa on pumice stone Biofilm 2.4 × 108 2.7 × 109

U. pertusa on floating cage Biofilm 1.9 × 107 1.7 × 109

2017/9/8 Stn. 2

Seawater
FLB 2.3 × 103 2.8 × 105

PAB 1.8 × 103 3.9 × 105

Sargassum dupulicatum Biofilm 7.9 × 106 3.9 × 108

Gelidium elegans Biofilm 1.5 × 107 6.0 × 108

U. pertusa Biofilm 4.0 × 107 1.2 × 109

Cladophora ohkuboana Biofilm 2.0 × 107 9.9 × 108

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 3. The densities of culturable bacteria (a): seawater, (b): macroalgal biofilms and total bacteria
directly counted with DAPI staining (c): seawater, (d): macroalgal biofilms and at Stns. 1 and 2. Total
(#) shown on (a) and (c) are expressed as the sum of particle-associated bacteria (PAB) and free-living
bacteria (FLB). A to F are macroalgal samples used to enumerate the densities.

3.2. Density of Growth-Limiting Bacteria

The densities of growth-limiting bacteria (GLB: the sum of algicidal bacteria (AB) and
growth-inhibiting bacteria (GIB)) detected from seawater, and macroalgal samples at Stns.1 and
2, were shown in Table 2 and Figures 4 and 5. GLB targetting at least one HAB species were detected
both in seawater and U. pertusa samples collected at Stn. 1 (Figure 4). The densities of GLB showed
that activities against Chattonella antiqua were 3.5 × 102 CFU mL−1 in FLB and 1.9 × 102 CFU mL−1 in
PAB (Figure 4a,b). GLB against Heterocapsa circularisquama and Karenia mikimotoi were detected only in
PAB with densities of 1.9 × 102 CFU mL−1 and 93 CFU mL−1, respectively (Figure 4b). AB targeted
C. antiqua, and H. circularisquama were detected from U. pertusa on the pumice stone with the same
density of 5.9 × 106 CFU g−1 wet weight (Figure 4c). GIB targeted H. circularisquama was detected
from U. pertusa on the floating cage at a concentration of 1.5 × 106 CFU g−1 wet weight (Figure 4d).
There were no GLB negatively affecting the growth of Alexandrium catenella and Heterosigma akashiwo
at Stn. 1. GLB targeting at least one HAB species were also detected from all samples collected at
Stn. 2 (Figure 5). The density of GLB showed that the activity against H. circularisquama was detected
in FLB with a density of 69 CFU mL−1 (Figure 5a). GLB isolated from PAB at Stn. 2 had a wide
range of activities affecting four HAB species except for A. catenella with densities ranging between
1.1 × 102 CFU mL−1 and 7.9 × 102 CFU mL−1 (Figure 5b). GLB affecting the growth of A. catenella,
H. circularisquama, and K. mikimotoi were found from the S. dupulicatum biofilm with densities of
4.0 × 105 CFU g−1 wet weight, 2.4 × 106 CFU g−1 wet weight and 4.0 × 105 CFU g−1 wet weight,
respectively (Figure 5c). GLB affecting C. antiqua, and H. circularisquama were detected from G. elegans
biofilm with densities of 7.6 × 105 CFU g−1 wet weight and 1.5 × 106 CFU g−1 wet weight, respectively
(Figure 5d). GLB isolated from C. ohkuboana targetted four HAB species, except K. mikimotoi, with
densities of 1.0 × 106 CFU g−1 wet weight for A. catenella, 5.0 × 105 CFU g−1 wet weight for C. antiqua,
5.0 × 105 CFU g−1 wet weight for H. akashiwo, and 4.0 × 106 CFU g−1 wet weight for H. circularisquama,
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respectively (Figure 5e). GLB were found in U. pertusa with densities of 3.0 × 106 CFU g−1 wet weight
for A. catenella, 6.0 × 106 CFU g−1 wet weight for H. circularisquama and 2.0 × 106 CFU g−1 wet weight
for K. mikimotoi, respectively (Figure 5f). GLB negatively affecting the growth of all five HAB species
were detected at the natural macroalgal bed (Stn. 2).

Table 2. Summary of growth-limiting bacteria (GLB) densities against five different harmful algal
bloom (HAB) species estimated through co-culture experiments from seawater and macroalgal biofilms
at Stns. 1 and 2.

Date Station Sample Name Sample Type

The Density of GLB against Five Different HAB Species
(CFU mL−1 or g−1 Wet Weight)

Alexandrium
catenella

Chattonella
antiqua

Heterosigma
akashiwo

Heterocapsa
circularisquama

Karenia
mikimotoi

2017/9/7 Stn. 1

Seawater
FLB — 3.5 × 102 — — —

PAB — 1.9 × 102 — 1.9 × 102 93

Ulva pertusa on
pumice stone Biofilm — 5.9 × 106 — 5.9 × 106 —

U. pertusa on
floating cage Biofilm — — — 1.5 × 106 —

2017/9/8 Stn. 2

Seawater
FLB — — — 69 —

PAB — 3.4 × 102 1.1 × 102 7.9 × 102 2.3 × 102

Sargassum
dupulicatum Biofilm 4.0 × 105 — — 2.4 × 106 4.0 × 105

Gelidium elegans Biofilm — 7.6 × 105 — 1.5 × 106 —

Cladophora
ohkuboana Biofilm 1.0 × 106 5.0 × 105 5.0 × 105 4.0 × 106 —

U. pertusa Biofilm 3.0 × 106 — — 6.0 × 106 2.0 × 106
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3.3. Composition of Growth-Limiting Bacteria

The genus and class of GLB identified from different seawater fractions (FLB and PAB), and each
of the host macroalgae at both sites are shown in Figure 6. All of the GLB isolated from seawater
and macroalgal biofilms were comprised of the classes Alphaproteobacteria, Gammaproteobacteria,
and Flavobacteria at Stns. 1 and 2. Seven GLB isolated from seawater at Stn. 1 were classified as the
genera of Nautella (Alphaproteobacteria) in FLB, Alteromonas, Pseudoalteromonas (Gammaproteobacteria)
and Tenacibaculum (Flavobacteria) in PAB (Figure 6a). In total, five GLB isolated from U. pertusa
grown on the pumice stone and the floating cage at Stn. 1 were found to belong to the genera of
Pseudoalteromonas, Vibrio (Gammaproteobacteria) and Aquimarina (Flavobacteria), respectively (Figure 6b,c).
The eight GLB detected in seawater at Stn. 2 were one Winogradskyella (Flavobacteria) as FLB, Roseobacter
(Alphaproteobacteria), Alteromonas, Pseudoalteromonas and Vibrio (Gammaproteobacteria) and Aquimarina,
Winogradskyella (Flavobacteria) as PAB (Figure 6d). The twenty-seven GLB strains isolated from four
macroalgal biofilms consisted of two genera from Alphaproteobacteria, Phaeobacter, and Roseovarius,
and three genera from Gammaproteobacteria, Alteromonas, Pseudoalteromonas, and Vibrio plus three genera
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of Flavobacteria, Aquimarina, Dokdonia and Winogradskyella (Figure 6e–h). About 67% of GLB found
from four macroalgal biofilms at the natural bed (Stn. 2) were the bacteria classified into the class
Flavobacteria. Aquimarina was the only GLB found from all four macroalgae at the natural bed (Stn. 2).
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Figure 6. The composition of growth-limiting bacteria (class and genus) isolated from seawater and
the different host macroalgae at Stn. 1 and 2. (Stn. 1: surface seawater (a), Ulva pertusa on pumice stone
(b), U. pertusa on floating cage (c), Stn. 2: surface seawater (d), Sargassum dupulicatum (e), Gelidium
elegans (f), Cladophora ohkuboana (g), U. pertusa (h)).The number in parenthesis shows the number of
strains used for 16S rRNA gene sequencing for identification.
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4. Discussion

Recent findings of growth-limiting bacteria densely living in a biofilm of seagrass and macroalgae
have offered an insight into possible future HAB control by harnessing ecosystem services [51].
Meanwhile, the loss of seagrass and macroalgal beds due to human impacts have been accelerated over
the last half-century [52–54]. Such deterioration of coastal vegetation coincided with the increasing
occurrences of HAB [51,55]. The increasing toxic blooms of the dinoflagellate A. minutum accompanied
by the large-scale decline of seagrass beds around the Mediterranean coast is one of the specific
cases [56]. Inaba et al. [37] documented that H. akashiwo cysts were found only from the sediments
where eelgrass had disappeared and studied sites where the abundant growth-limiting bacteria
detected rarely experienced blooms of paralytic shellfish toxin-producing dinoflagellate Alexandrium in
Puget Sound, WA, USA. On the positive side, the efforts to protect and restore seagrass and macroalgal
beds are underway worldwide [57,58]; for instance, vigorous restoration activities of seagrass bed in
Hinase, Okayama, Japan increased the natural bed more than twenty times since 1985 [57]. The efforts
will enhance the resistance of coastal areas against HAB events in the long run. However, this holistic
approach to prevent HABs may not be as applicable as direct controls, such as the use of flocculants [59].
Thus, it is crucial to develop an environmentally friendly measure that can be widely applicable
and cost-effective.

Ulva can be attractive candidate organisms revealed to harbor GLB [34,37], growing fast compared
to other macroalgae or seagrass [60,61], relatively easy to culture [62], restoring water quality through
the uptake of excess nutrients [63,64], releasing allelochemicals negatively affecting the growth of
HAB species [65,66], and having commercial importance in that they are frequently consumed under
the name “Aonori” in Asia [67,68]. Several Ulva species have already been tested to be organisms
composing large scale integrated multi-trophic aquaculture (IMTA) systems [67,69]. In the present
study, harmful algal growth-limiting bacteria (GLB) were found in the order of 106 CFU per 1 g of
U. pertusa grown on the pumice stone and the mobile floating cage at Stn. 1, showing the equivalent
value to the natural growing macroalgal species at Stn. 2 as well as previous studies estimating the
densities of GLB on Ulva sp. and Gelidium sp. in Osaka Bay, Japan [34] and on U. lactuca in Puget
Sound, USA [37]. To our best knowledge, this is the first report to reveal that algal growth-limiting
bacteria can be harbored within a few months on the newly introduced Ulva thallus, suggesting the
possible future field application to control HABs by introducing Ulva beds as a source of GLB.

Previous studies have shown that a higher proportion of GLB was often associated with
particles [28,44]. In the study in Puget Sound, most isolated bacteria from seawater having more
extensive activity ranges were in the particle-associated form [37]. In the present study, the density of
PAB (Particle-associated bacteria) as GLB was higher than FLB (Free-living bacteria) at the natural
macroalgal bed (Stn. 2), killing most of the tested HAB species except A. catenella (Figure 5b). Moreover,
88% of GLB detected from seawater at the natural macroalgal bed was the same bacterial genera as GLB
detected from macroalgal biofilms (Figure 6). It is known that macroalgal beds are one of the essential
sources releasing particulate and dissolved organic matter (POM and DOM) to the surrounding
environments [70–72]. The POM derived from the macroalgae at Stn. 2 may have increased substrate
availability for specific bacterial communities with high exoenzymatic activities [73–75] that resulted
in frequent detection of GLB as PAB forms in the water. This could be reasonably explained by highly
dense GLB harbored on a macroalgal surface being provided synchronously with macroalgal-derived
POM to the surrounding water.

Many bacteria previously reported as algicidal and/or growth-inhibiting bacteria were among
the Cytophaga/Flavobacterium/Bacteroidetes (CFB) group [27]. They are also critical players for the
degradation of organic matter in aquatic environments [76]. Ecologically important roles toward
macroalgae of the CFB group have been demonstrated, such as controlling morphogenesis [77,78],
promotion and/or inhibition of spore germination, and colonization [79,80], close association with
diseases [81], etc. In the present study, more than half of GLB were identified as bacteria belonging
to the class Flavobacteria. Notably, the genus Aquimarina within the class Flavobacteria were found
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from all of the macroalgae and 25% of GLB in seawater samples at Stn. 2 (Figure 6). With regard to
the growth-limiting activity range, all GLB isolated from seawater and Ulva samples at Stn. 1 were
found to exhibit specific activities in that 92% of GLB negatively affected the growth of only one HAB
species (C. antiqua or H. circularisquama) (Figure 7a); however, GLB isolated from natural macroalgae
bed showed a much broader range of activities on tested HAB species (Figure 7b). About 90% of GLB
affecting the growth of more than one HAB species were found to be Flavobacteria, which consisted
of Aquimarina and Dokdonia (Figure 7b). Aquimarina isolated from red alga on the coast of China is
shown to exhibit diverse agarase activities, enhancing the degradation of host algal tissue [82]. These
results suggest the multiple roles of the members of Flavobacteria diffusing around macroalgal beds.
The physiological and biochemical characteristics of macroalgae predetermine the composition of
their biofilm microbial communities [83], and the host species-specific microbial association in aquatic
angiosperms is known [84]. It is worth noting that natural macroalgal beds with higher diversity
may offer various inhabiting substrates for diverse GLB, functioning effectively as bloom control for
multiple harmful algal species (Figure 7b).
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5. Conclusions

The present study illustrated that GLB with equivalent value as naturally growing macroalgae
could be harbored on the surface of artificially introduced U. pertusa for less than three months,
providing novel insight into the potential use of the artificial introduction of U. pertusa beds as
biological control of HABs. Results from the natural macroalgal bed suggested that higher macroalgal
diversity provide diverse inhabiting substrates for GLB, functioning effectively as bloom control for
multiple harmful algal species. It should be also emphasized that the protection and restoration of
natural macroalgal beds may serve as not only critical habitats for numerous marine and estuary
organisms but also one of the original hotspots of GLB, contributing to mitigating HABs in coastal
environments. Further investigations to understand the diffusive behavior of GLB are needed to
achieve the practical application.
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