*宮下 洋平(北大水産), 小林 淳希(北大水産) 大洞 裕貴 (北大水産), 田中 邦明 (北海道教育大), 今井 一郎 (北大水産)

1. はじめに

五稜郭は江戸時代末期に北海道函館に建設され た陵墓式城郭であり、1952年に特別史跡に指定さ れた。現在は五稜郭公園となり重要な観光地と,市 民の憩いの場として親しまれている。五稜郭は周 囲を外堀で囲まれ、ハスやヒシ等の水生植物が繁 茂する。それらの水草はしばしば爆発的に繁茂す ることから、年2回の刈り取りが行われている。

しかしながら2014年9月に、藍藻類主体と思わ れる濃密なブルームが発生し、悪臭を放つと同時 に景観が悪化した。我々は現在, 環境に配慮したア オコ防除法として,水生植物を活用した防除手法 を提案している。本研究では、五稜郭外堀における アオコの発生状況を把握すると同時に, 外堀の一 部に水生植物帯 (ヒシ帯) を設置し, 水生植物の有 無による植物プランクトンの群集構造の変化につ いて検討を加えた。

2. 材料と方法

調査は2015年5月から11月にかけて2週間に1 度の頻度で行った。試料採取はヒシを人為的に残 した水生植物区 (Stn. P) と,調査期間を通じて水 生植物が見られないコントロール区 (Stn. C) の2 地点で表層からバケツ採水を行い, 水温, pH およ び溶存酸素を現場で測定した。採水試料から、各栄 養塩濃度、クロロフィル a濃度を分析・算出した。 また, 試料をグルタルアルデヒドで固定し (終濃 度 1%), 倒立顕微鏡下で植物プランクトンの種同 定および計数を行った。

3. 結果

Stn. P における植物プランクトンの組成を見る と,5月初頭は緑藻類 Scenedesmus spp. が優占して いたが、その後 21 日には Synedra spp., 6 月は Achnanthes spp. をはじめとする珪藻類が優占した。の発生防除できる可能性が見いだされた。しかし、 7月に入ると藍藻類 Aphanocapsa spp. および Cylindrospermum spp. が増加し, 藍藻類の割合は 60%を超えた。8月には藍藻類の細胞数の割合は全 体の90%以上に上がり植物プランクトンの総細胞

数は最大の 9.4×10^4 cells mL⁻¹ を記録した。 藍藻類 の優占は9月下旬まで続いた。10月になると、再 び珪藻類へと優占が遷移した。調査期間中, 藍藻類 の細胞密度の平均は 1.7×10^4 cells mL⁻¹ であった。

Stn. C では、5月は緑藻類が最も割合が高く、5月 1 目は*Scenedesmus* spp., 21 目は*Dictyosphaerium* spp. が最も細胞数が多かった。6月から7月にかけては 珪藻類が優占し、全体の90%以上を占めた。7月下 旬からはStn. P同様に藍藻類の割合が高くなり、そ の優占は9月下旬まで続いた。藍藻類の組成を見 ると,7月下旬はCylindrospermum spp. が80%を占 め、8月19は一転してAphanocapsa spp. が最も優占 した。その後、9月17日まで再び Cylindrospermum spp. の割合が高かった。10月以降はStn.P同様,再 び珪藻類の割合が増加する結果となった。調査期 間中の藍藻類の細胞密度の平均は 2.9 x 10⁴ cells mL^{-1} であった。

4. 考察

本調査の結果, 五稜郭では6月より珪藻類の Achnanthes spp. が優占した。Achnanthes spp. は付 着性であり、Stn. P における Achnanthes spp. の細胞 数密度が高いことから、水生植物の付着珪藻由来 であり、その後石垣等に付着して増加供給された と考えられる。その後はケイ酸塩が消費され、収束 した。また、期間中窒素制限環境であったが、窒素 固定能を有する藍藻類は増殖できたと考えられる。 夏季の藍藻類の細胞密度を比較すると、Stn. Pの方 が Stn. C に比べて低かった。 ヒシは、 ヒシ表面のバ イオフィルム中に藍藻類を殺滅する細菌 (殺藻細 菌) が生息しており, 藍藻類の密度が減少したと 考えられる。

本調査により水生植物の有効活用によりアオコ ヒシの過度な繁茂は溶存酸素を低下させ、環境の 悪化を招く恐れもある為, 適切な密度管理により 良好な環境条件を創出する必要がある。