Notice on Plankton Seminar #15010

09:30-11:30, 21 Sept. (Mon.) 2015 at room #N204

水草ヒシ由来の殺藻細菌によるアオコ防除の可能性(学会発表練習)

*小林淳希, 宮下洋平, 今井一郎 (北大院・水産)

1. はじめに

北海道渡島大沼では湖沼の富栄養化が進行し,有害 アオコは湖水の異臭や毒化, 水生生物への悪影響や景 観の悪化等の問題を起こすため、早急な対策が必要で ある。アオコ対策としては,直接的な除去や薬品投与 による殺藻除去等の方法があるが、コストや環境への 影響が懸念され,有効な環境に優しい手法は確立して いない。しかし近年、アオコ原因藻類を殺滅する殺藻 細菌や増殖阻害細菌を活用した方法が提案されている。 殺藻細菌は湖水中にも存在するが、水草ヒシなどの表 面バイオフィルム (BF) に高密度に生息することが発 見された。そのため、ヒシBF由来の殺藻細菌が周辺湖 水中に供給され,アオコの発生制御 (特に予防) の働 きをしている可能性がある。本研究では、北海道渡島 大沼湖沼群において、ヒシが繁茂する地点と繁茂しな い地点より細菌を分離し、ヒシ帯を活用したアオコの 発生防除の可能性について検討を行った。

2. 材料と方法

湖水とヒシの採集は2014年5月から10月まで毎月, ヒシが繁茂する蓴菜沼と旧流山温泉調整池,及びヒシ の繁茂が見られない渡島大沼の船着き場の3地点で行 った。各地点のヒシ試料は葉と水中根に分けて実験に 供した。試料に滅菌蒸留水を加え,600回強振して表面 BF を剥離させ BF 懸濁液を作成した。BF 懸濁液と湖 水をそれぞれ適宜段階希釈し、ST10⁻¹ 寒天培地に塗抹 して従属栄養細菌にコロニーを形成させた。細菌を分 離後, CT 培地で培養した M. aeruginosa (Ma17株) を細 胞密度約 1.0 x 10⁵ cells mL⁻¹ となるように 48 区画のウ

ェルプレートに 0.8 mL ずつ分注した。分離培養した細 菌株を,滅菌爪楊枝を用いて各ウェルに接種し,温度 有毒藍藻類のブルーム (アオコ) が毎年発生している。25℃, 光強度 100 µmol photons m⁻² s⁻¹, 明暗周期 14 hL: 10 hD の条件下で2週間の共培養を行った。その後、倒 立顕微鏡で細菌による M. aeruginosa の殺藻と増殖阻害 を判定し、殺藻細菌及び増殖阻害細菌の密度を算出し

3. 結果と考察

蓴菜沼及び流山温泉調整池より採取したヒシ BF よ り, 部位に関わらず 10^7 CFU g^{-1} wet weight のオーダー の密度で殺藻細菌及び増殖阻害細菌の生息が確認され た。湖水中の殺藻細菌は、船着き場では 3.6 x 10² CFU mL-1, ヒシが繁茂している蓴菜沼及び流山温泉調整池 では、それぞれ $9.0 \times 10^{2} \text{ CFU mL}^{-1}$, $2.2 \times 10^{4} \text{ CFU mL}^{-1}$ の密度であった。特に夏季に一面がヒシで覆われる流 山温泉調整池では、船着き場と比較して約100倍の密 度で殺藻細菌が検出された。ヒシが繁茂しない船着き 場と比較して,繁茂する蓴菜沼と流山温泉調整池にお いて, 殺藻細菌が格段に高密度に検出された。また, ヒ シ表面の BF から殺藻細菌が高密度に見出されたこと から, 本来ヒシの表面に付着生息していた殺藻細菌が 湖水中に供給され,アオコの発生防除に寄与している 可能性が改めて示された。これに関しては BF 由来の 細菌とヒシ帯の湖水中の細菌の遺伝子による同定・比 較を行い、確認を行う予定である。本研究より、水草ヒ シを活用したアオコの発生防除の可能性が示された。 今後は他の水草も考慮し、「水生植物帯」が有するア オコの発生防除能に関して, 多角的な視点から検討を 行う予定である。